The Annals of Statistics

Adaptive estimation of the sparsity in the Gaussian vector model

Alexandra Carpentier and Nicolas Verzelen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Consider the Gaussian vector model with mean value $\theta$. We study the twin problems of estimating the number $\Vert \theta \Vert_{0}$ of nonzero components of $\theta$ and testing whether $\Vert \theta \Vert_{0}$ is smaller than some value. For testing, we establish the minimax separation distances for this model and introduce a minimax adaptive test. Extensions to the case of unknown variance are also discussed. Rewriting the estimation of $\Vert \theta \Vert_{0}$ as a multiple testing problem of all hypotheses $\{\Vert \theta \Vert_{0}\leq q\}$, we both derive a new way of assessing the optimality of a sparsity estimator and we exhibit such an optimal procedure. This general approach provides a roadmap for estimating the complexity of the signal in various statistical models.

Article information

Source
Ann. Statist., Volume 47, Number 1 (2019), 93-126.

Dates
Received: March 2017
Revised: September 2017
First available in Project Euclid: 30 November 2018

Permanent link to this document
https://projecteuclid.org/euclid.aos/1543568583

Digital Object Identifier
doi:10.1214/17-AOS1680

Mathematical Reviews number (MathSciNet)
MR3909928

Zentralblatt MATH identifier
07036196

Subjects
Primary: 62C20: Minimax procedures 62G10: Hypothesis testing
Secondary: 62B10: Information-theoretic topics [See also 94A17]

Keywords
Sparsity estimation and testing composite-composite testing problems minimax separation distance in testing problems

Citation

Carpentier, Alexandra; Verzelen, Nicolas. Adaptive estimation of the sparsity in the Gaussian vector model. Ann. Statist. 47 (2019), no. 1, 93--126. doi:10.1214/17-AOS1680. https://projecteuclid.org/euclid.aos/1543568583


Export citation

References

  • [1] Arias-Castro, E., Candès, E. J. and Plan, Y. (2011). Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism. Ann. Statist. 39 2533–2556.
  • [2] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 577–606.
  • [3] Baraud, Y., Huet, S. and Laurent, B. (2005). Testing convex hypotheses on the mean of a Gaussian vector. Application to testing qualitative hypotheses on a regression function. Ann. Statist. 33 214–257.
  • [4] Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, Heidelberg.
  • [5] Cai, T. T. and Guo, Z. (2016). Accuracy assessment for high-dimensional linear regression. Preprint. Available at arXiv:1603.03474.
  • [6] Cai, T. T. and Guo, Z. (2017). Confidence intervals for high-dimensional linear regression: Minimax rates and adaptivity. Ann. Statist. 45 615–646.
  • [7] Cai, T. T. and Jin, J. (2010). Optimal rates of convergence for estimating the null density and proportion of nonnull effects in large-scale multiple testing. Ann. Statist. 38 100–145.
  • [8] Cai, T. T., Jin, J. and Low, M. G. (2007). Estimation and confidence sets for sparse normal mixtures. Ann. Statist. 35 2421–2449.
  • [9] Cai, T. T. and Low, M. G. (2004). An adaptation theory for nonparametric confidence intervals. Ann. Statist. 32 1805–1840.
  • [10] Cai, T. T. and Low, M. G. (2006). Adaptive confidence balls. Ann. Statist. 34 202–228.
  • [11] Cai, T. T. and Low, M. G. (2011). Testing composite hypotheses, Hermite polynomials and optimal estimation of a nonsmooth functional. Ann. Statist. 39 1012–1041.
  • [12] Carpentier, A. (2015). Testing the regularity of a smooth signal. Bernoulli 21 465–488.
  • [13] Carpentier, A. and Verzelen, N. (2019). Supplement to “Adaptive estimation of the sparsity in the Gaussian vector model.” DOI:10.1214/17-AOS1680SUPP.
  • [14] Celisse, A. and Robin, S. (2010). A cross-validation based estimation of the proportion of true null hypotheses. J. Statist. Plann. Inference 140 3132–3147.
  • [15] Collier, O., Comminges, L. and Tsybakov, A. B. (2017). Minimax estimation of linear and quadratic functionals on sparsity classes. Ann. Statist. 45 923–958.
  • [16] Comminges, L. and Dalalyan, A. S. (2013). Minimax testing of a composite null hypothesis defined via a quadratic functional in the model of regression. Electron. J. Stat. 7 146–190.
  • [17] Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 962–994.
  • [18] Fromont, M., Lerasle, M. and Reynaud-Bouret, P. (2016). Family-wise separation rates for multiple testing. Ann. Statist. 44 2533–2563.
  • [19] Gayraud, G. and Pouet, C. (2005). Adaptive minimax testing in the discrete regression scheme. Probab. Theory Related Fields 133 531–558.
  • [20] Giné, E. and Nickl, R. (2015). Mathematical Foundations of Infinite-Dimensional Statistical Models 40. Cambridge Univ. Press, Cambridge.
  • [21] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (2012). Wavelets, Approximation, and Statistical Applications 129. Springer, New York.
  • [22] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Springer, New York.
  • [23] Hoffmann, M. and Nickl, R. (2011). On adaptive inference and confidence bands. Ann. Statist. 39 2383–2409.
  • [24] Ingster, Y., Tsybakov, A. and Verzelen, N. (2010). Detection boundary in sparse regression. Electron. J. Stat. 4 1476–1526.
  • [25] Ingster, Yu. and Suslina, I. A. (2003). Nonparametric Goodness-of-Fit Testing Under Gaussian Models. Lecture Notes in Statistics 169. Springer, New York.
  • [26] Jin, J. (2008). Proportion of non-zero normal means: Universal oracle equivalences and uniformly consistent estimators. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 461–493.
  • [27] Jin, J. and Tony Cai, T. (2007). Estimating the null and the proportional of nonnull effects in large-scale multiple comparisons. J. Amer. Statist. Assoc. 102 495–506.
  • [28] Juditsky, A. and Nemirovski, A. (2002). On nonparametric tests of positivity/monotonicity/convexity. Ann. Statist. 30 498–527.
  • [29] Kalai, A. T., Moitra, A. and Valiant, G. (2012). Disentangling Gaussians. Commun. ACM 55 113–120.
  • [30] Keshavan, R. H., Montanari, A. and Oh, S. (2010). Matrix completion from a few entries. IEEE Trans. Inform. Theory 56 2980–2998.
  • [31] Langaas, M., Lindqvist, B. H. and Ferkingstad, E. (2005). Estimating the proportion of true null hypotheses, with application to DNA microarray data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 555–572.
  • [32] Lepski, O., Nemirovski, A. and Spokoiny, V. (1999). On estimation of the $L_{r}$ norm of a regression function. Probab. Theory Related Fields 113 221–253.
  • [33] Li, J. and Siegmund, D. (2015). Higher criticism: $p$-values and criticism. Ann. Statist. 43 1323–1350.
  • [34] Maher, B. (2008). Personal genomes: The case of the missing heritability. Nature 456 18–21.
  • [35] Massart, P. (2007). Concentration Inequalities and Model Selection. Lecture Notes in Math. 1896. Springer, Berlin.
  • [36] Meinshausen, N. and Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. Ann. Statist. 34 373–393.
  • [37] Moscovich, A., Nadler, B. and Spiegelman, C. (2016). On the exact Berk–Jones statistics and their $p$-value calculation. Electron. J. Stat. 10 2329–2354.
  • [38] Nickl, R. and van de Geer, S. (2013). Confidence sets in sparse regression. Ann. Statist. 41 2852–2876.
  • [39] Patra, R. K. and Sen, B. (2015). Estimation of a two-component mixture model with applications to multiple testing. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 869–893.
  • [40] Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 479–498.
  • [41] Toro, R. et al. (2015). Genomic architecture of human neuroanatomical diversity. Mol. Psychiatry 20 1011–1016.
  • [42] Verzelen, N. (2012). Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. Electron. J. Stat. 6 38–90.

Supplemental materials

  • Supplement to “Adaptive estimation of the sparsity in the Gaussian vector model”. Proofs of the results.