The Annals of Statistics

Local asymptotic equivalence of pure states ensembles and quantum Gaussian white noise

Cristina Butucea, Mădălin Guţă, and Michael Nussbaum

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Quantum technology is increasingly relying on specialised statistical inference methods for analysing quantum measurement data. This motivates the development of “quantum statistics”, a field that is shaping up at the overlap of quantum physics and “classical” statistics. One of the less investigated topics to date is that of statistical inference for infinite dimensional quantum systems, which can be seen as quantum counterpart of nonparametric statistics. In this paper, we analyse the asymptotic theory of quantum statistical models consisting of ensembles of quantum systems which are identically prepared in a pure state. In the limit of large ensembles, we establish the local asymptotic equivalence (LAE) of this i.i.d. model to a quantum Gaussian white noise model. We use the LAE result in order to establish minimax rates for the estimation of pure states belonging to Hermite–Sobolev classes of wave functions. Moreover, for quadratic functional estimation of the same states we note an elbow effect in the rates, whereas for testing a pure state a sharp parametric rate is attained over the nonparametric Hermite–Sobolev class.

Article information

Source
Ann. Statist., Volume 46, Number 6B (2018), 3676-3706.

Dates
Received: May 2017
Revised: December 2017
First available in Project Euclid: 11 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.aos/1536631287

Digital Object Identifier
doi:10.1214/17-AOS1672

Mathematical Reviews number (MathSciNet)
MR3852665

Zentralblatt MATH identifier
06965701

Subjects
Primary: 62B15: Theory of statistical experiments
Secondary: 62G05: Estimation 62G10: Hypothesis testing 81P50: Quantum state estimation, approximate cloning

Keywords
Le Cam distance local asymptotic equivalence quantum Gaussian process quantum Gaussian sequence quantum states ensemble nonparametric estimation quadratic functionals nonparametric sharp testing rates

Citation

Butucea, Cristina; Guţă, Mădălin; Nussbaum, Michael. Local asymptotic equivalence of pure states ensembles and quantum Gaussian white noise. Ann. Statist. 46 (2018), no. 6B, 3676--3706. doi:10.1214/17-AOS1672. https://projecteuclid.org/euclid.aos/1536631287


Export citation

References

  • [1] Artiles, L. M., Gill, R. D. and Guţă, M. I. (2005). An invitation to quantum tomography. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 109–134.
  • [2] Audenaert, K. M. R., Calsamiglia, J., Muñoz-Tapia, R., Bagan, E., Masanes, L., Acin, A. and Verstraete, F. (2007). Discriminating states: The quantum Chernoff bound. Phys. Rev. Lett. 98 160501.
  • [3] Audenaert, K. M. R., Nussbaum, M., Szkola, A. and Verstraete, F. (2008). Asymptotic error rates in quantum hypothesis testing. Comm. Math. Phys. 279 251–283.
  • [4] Bagan, E., Ballester, M. A., Gill, R. D., Muñoz-Tapia, R. and Romero-Isart, O. (2006). Separable measurement estimation of density matrices and its fidelity gap with collective protocols. Phys. Rev. Lett. 97 130501.
  • [5] Bagan, E., Monras, A. and Muñoz-Tapia, R. (2005). Comprehensive analysis of quantum pure-state estimation for two-level systems. Phys. Rev. A 71 062318.
  • [6] Barndorff-Nielsen, O. E., Gill, R. and Jupp, P. E. (2003). On quantum statistical inference (with discussion). J. Roy. Statist. Soc. Ser. B 65 775–816.
  • [7] Bongioanni, B. (2011). Sobolev spaces diversification. Rev. Un. Mat. Argentina 52 23–34.
  • [8] Bongioanni, B. and Torrea, J. L. (2006). Sobolev spaces associated to the harmonic oscillator. Proc. Indian Acad. Sci. Math. Sci. 116 337–360.
  • [9] Braunstein, S. L. and Caves, C. M. (1994). Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72 3439–3443.
  • [10] Butucea, C., Guţă, M. and Artiles, L. (2007). Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. Ann. Statist. 35 465–494.
  • [11] Butucea, C., Guţă, M. and Kypraios, T. (2015). Spectral thresholding quantum tomography for low rank states. New J. Phys. 17 113050.
  • [12] Butucea, C., Guţă, M. and Nussbaum, M. (2018). Supplement to “Local asymptotic equivalence of pure states ensembles and quantum Gaussian white noise”. DOI:10.1214/17-AOS1672SUPP.
  • [13] Cai, T., Kim, D., Wang, Y., Yuan, M. and Zhou, H. H. (2016). Optimal large-scale quantum state tomography with Pauli measurements. Ann. Statist. 44 682–712.
  • [14] Cai, T. T. and Low, M. G. (2005). Nonquadratic estimators of a quadratic functional. Ann. Statist. 33 2930–2956.
  • [15] Carpentier, A., Eisert, J., Gross, D. and Nickl, R. Uncertainty quantification for matrix compressed sensing and quantum tomography problems. Available at arXiv:1504.03234.
  • [16] Christandl, M. and Renner, R. (2012). Reliable quantum state tomography. Phys. Rev. Lett. 109 120403.
  • [17] Ermakov, M. S. (1990). Minimax detection of a signal in Gaussian white noise. Teor. Veroyatn. Primen. 35 704–715.
  • [18] Faist, P. and Renner, R. (2016). Practical and reliable error bars in quantum tomography. Phys. Rev. Lett. 117 010404.
  • [19] Flammia, S. T., Gross, D., Liu, Y.-K. and Eisert, J. (2012). Quantum tomography via compressed sensing: Error bounds, sample complexity, and efficient estimators. New J. Phys. 14 095022.
  • [20] Fuchs, C. A. and van de Graaf, J. (1999). Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inform. Theory 45 1216–1227.
  • [21] Gill, R. D. and Guţă, M. I. (2013). On asymptotic quantum statistical inference. In From Probability to Statistics and Back: High-Dimensional Models and Processes. Inst. Math. Stat. (IMS) Collect. 9 105–127. IMS, Beachwood, OH.
  • [22] Gill, R. D. and Massar, S. (2000). State estimation for large ensembles. Phys. Rev. A 61 042312.
  • [23] Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory 57 1548–1566.
  • [24] Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. and Eisert, J. (2010). Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105 150401.
  • [25] Guţă, M., Janssens, B. and Kahn, J. (2008). Optimal estimation of qubit states with continuous time measurements. Comm. Math. Phys. 277 127–160.
  • [26] Guţă, M. and Jenčová, A. (2007). Local asymptotic normality in quantum statistics. Comm. Math. Phys. 276 341–379.
  • [27] Guţă, M. and Kahn, J. (2006). Local asymptotic normality for qubit states. Phys. Rev. A 73 052108.
  • [28] Guta, M. and Kahn, J. (2008). Local asymptotic normality and optimal estimation for d-dimensional quantum systems. In Quantum Stochastics and Information: Statistics, Filtering and Control 300–322. World Scientific, Singapore.
  • [29] Häffner, H., Hänsel, W., Roos, C. F., Benhelm, J., Chek-al-Kar, D., Chwalla, M., Körber, T., Rapol, U. D., Riebe, M., Schmidt, P. O., Becher, C., Gühne, O., Dür, W. and Blatt, R. (2005). Scalable multiparticle entanglement of trapped ions. Nature 438 643–646.
  • [30] Hayashi, M. (1998). Asymptotic estimation theory for a finite-dimensional pure state model. J. Phys. A: Math. Gen. 31 4633.
  • [31] Hayashi, M. (2005). Asymptotic Theory of Quantum Statistical Inference: Selected Papers. World Scientific, Singapore.
  • [32] Helstrom, C. W. (1976). Quantum Detection and Estimation Theory. Academic Press, New York.
  • [33] Hiai, F. and Petz, D. (1991). The proper formula for relative entropy and its asymptotics in quantum probability. Comm. Math. Phys. 143 99–114.
  • [34] Holevo, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Series in Statistics and Probability 1. North-Holland, Amsterdam.
  • [35] Ingster, Y. and Stepanova, N. (2011). Estimation and detection of functions from anisotropic Sobolev classes. Electron. J. Stat. 5 484–506.
  • [36] Ingster, Y. I. and Suslina, I. A. (2003). Nonparametric Goodness-of-Fit Testing Under Gaussian Models. Lecture Notes in Statistics 169. Springer, New York.
  • [37] Jenčová, A. and Petz, D. (2006). Sufficiency in quantum statistical inference. Comm. Math. Phys. 263 259–276.
  • [38] Kahn, J. and Guţă, M. (2009). Local asymptotic normality for finite dimensional quantum systems. Comm. Math. Phys. 289 597–652.
  • [39] Kargin, V. (2005). On the Chernoff bound for efficiency of quantum hypothesis testing. Ann. Statist. 33 959–976.
  • [40] Klemelä, J. (2006). Sharp adaptive estimation of quadratic functionals. Probab. Theory Related Fields 134 539–564.
  • [41] Koltchinskii, V. (2011). Von Neumann entropy penalization and low-rank matrix estimation. Ann. Statist. 39 2936–2973.
  • [42] Koltchinskii, V. and Xia, D. (2015). Optimal estimation of low rank density matrices. J. Mach. Learn. Res. 16 1757–1792.
  • [43] Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer, New York.
  • [44] Leonhardt, U. (1997). Measuring the Quantum State of Light. Cambridge Univ. Press, Cambridge.
  • [45] Li, K. (2016). Discriminating quantum states: The multiple Chernoff distance. Ann. Statist. 44 1661–1679.
  • [46] Nair, R., Guha, S. and Tan, S.-H. (2014). Realizable receivers for discriminating coherent and multicopy quantum states near the quantum limit. Phys. Rev. A 89 032318.
  • [47] Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge.
  • [48] Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399–2430.
  • [49] Nussbaum, M. and Szkola, A. (2006). The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Statist. 37 1040–1057.
  • [50] Ogawa, T. and Nagaoka, H. (2000). Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans. Inform. Theory 46 2428–2433.
  • [51] Paris, M. G. A. and Řeháček, J. (2004). Quantum state estimation. In Quantum State Estimation. Lecture Notes in Physics 649. Springer, Berlin.
  • [52] Parthasarathy, K. R. (1992). An Introduction to Quantum Stochastic Calculus. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel.
  • [53] Ray, K. and Schmidt-Hieber, J. (2017). The Le Cam distance between density estimation, Poisson processes and Gaussian white noise. Available at arXiv:1608.01824 [math.ST].
  • [54] Strasser, H. (1985). Mathematical Theory of Statistics. de Gruyter, Berlin.
  • [55] Temme, K. and Verstraete, F. (2015). Quantum chi-squared and goodness of fit testing. J. Math. Phys. 56 012202.
  • [56] Torgersen, E. (1991). Comparison of Statistical Experiments. Encyclopedia of Mathematics and Its Applications 36. Cambridge Univ. Press, Cambridge.
  • [57] Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York.
  • [58] Walter, M. and Renes, J. M. (2014). Lower bounds for quantum parameter estimation. IEEE Trans. Inform. Theory 60 8007–8023.

Supplemental materials

  • Supplement to “Local asymptotic equivalence of pure states ensembles and quantum Gaussian white noise”. A more detailed overview of asymptotic equivalence for classical models is provided in Appendix A.1. The results on quadratic functionals and nonparametric testing are further discussed in Appendix A.2 and A.3. Proofs of all results are given in Appendix B.