The Annals of Statistics

CLT for largest eigenvalues and unit root testing for high-dimensional nonstationary time series

Bo Zhang, Guangming Pan, and Jiti Gao

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\{Z_{ij}\}$ be independent and identically distributed (i.i.d.) random variables with $EZ_{ij}=0$, $E\vert Z_{ij}\vert^{2}=1$ and $E\vert Z_{ij}\vert^{4}<\infty$. Define linear processes $Y_{tj}=\sum_{k=0}^{\infty}b_{k}Z_{t-k,j}$ with $\sum_{i=0}^{\infty}\vert b_{i}\vert <\infty$. Consider a $p$-dimensional time series model of the form $\mathbf{x}_{t}=\boldsymbol{\Pi} \mathbf{x}_{t-1}+\Sigma^{1/2}\mathbf{y}_{t},\ 1\leq t\leq T$ with $\mathbf{y}_{t}=(Y_{t1},\ldots,Y_{tp})'$ and $\Sigma^{1/2}$ be the square root of a symmetric positive definite matrix. Let $\mathbf{B}=(1/p)\mathbf{XX}^{*}$ with $\mathbf{X}=(\mathbf{x_{1}},\ldots,\mathbf{x_{T}})'$ and $X^{*}$ be the conjugate transpose. This paper establishes both the convergence in probability and the asymptotic joint distribution of the first $k$ largest eigenvalues of $\mathbf{B}$ when $\mathbf{x}_{t}$ is nonstationary. As an application, two new unit root tests for possible nonstationarity of high-dimensional time series are proposed and then studied both theoretically and numerically.

Article information

Source
Ann. Statist., Volume 46, Number 5 (2018), 2186-2215.

Dates
Received: May 2016
Revised: July 2017
First available in Project Euclid: 17 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.aos/1534492833

Digital Object Identifier
doi:10.1214/17-AOS1616

Mathematical Reviews number (MathSciNet)
MR3845015

Zentralblatt MATH identifier
06964330

Subjects
Primary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52) 34K25: Asymptotic theory
Secondary: 60F05: Central limit and other weak theorems 62H10: Distribution of statistics

Keywords
Asymptotic normality largest eigenvalue linear process unit root test

Citation

Zhang, Bo; Pan, Guangming; Gao, Jiti. CLT for largest eigenvalues and unit root testing for high-dimensional nonstationary time series. Ann. Statist. 46 (2018), no. 5, 2186--2215. doi:10.1214/17-AOS1616. https://projecteuclid.org/euclid.aos/1534492833


Export citation

References

  • [1] Bai, Z. and Silverstein, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed. Springer, New York.
  • [2] Bai, Z. D. and Yao, J. F. (2008). Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat. 44 447–474.
  • [3] Baik, J., Ben Arous, G. and Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 1643–1697.
  • [4] Baik, J. and Silverstein, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 1382–1408.
  • [5] Bao, Z. G., Pan, G. M. and Zhou, W. (2015). Universality for the largest eigenvalue of sample covariance matrices with general population. Ann. Statist. 43 382–421.
  • [6] Chan, N. H. and Wei, C. Z. (1988). Limiting distributions of least squares estimates of unstable autoregressive processes. Ann. Statist. 16 367–401.
  • [7] Chang, Y. (2004). Bootstrap unit root tests in panels with cross-sectional dependency. J. Econometrics 120 263–293.
  • [8] Choi, I. (2001). Unit root tests for panel data. J. Int. Money Financ. 20 249–272.
  • [9] Choi, I. (2015). Almost All About Unit Roots: Foundations, Developments and Applications. Cambridge Univ. Press, London.
  • [10] Choi, I. and Chue, T. K. (2007). Subsampling hypothesis tests for nonstationary panels with applications to exchange rates and stock prices. J. Appl. Econometrics 22 233–264.
  • [11] Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. J. Amer. Statist. Assoc. 74 423–431.
  • [12] El Karoui, N. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. Ann. Probab. 35 663–714.
  • [13] Fisher, R. A. (1939). The sampling distribution of some statistics obtained from non-linear equations. Ann. Eugen. 9 238–249.
  • [14] Hsu, P. L. (1939). On the distribution of roots of certain determinant equations. Ann. Eugen. 9 250–258.
  • [15] Im, K., Pesaran, M. H. and Shin, Y. (2003). Testing for unit roots in heterogeneous panels. J. Econometrics 115 53–74.
  • [16] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal component analysis. Ann. Statist. 29 295–327.
  • [17] Johnstone, I. M. (2007). High dimensional statistical inference and random matrices. In International Congress of Mathematicians I 307–333.
  • [18] Levin, A., Lin, C. F. and Chu, C. S. J. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econometrics 108 1–24.
  • [19] Liu, H., Aue, A. and Paul, D. (2015). On the Marčenko–Pastur law for linear time series. Ann. Statist. 43 675–712.
  • [20] Maddala, G. S. and Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxf. Bull. Econ. Stat. 61 631–652.
  • [21] Marčenko, V. A. and Pastur, L. A. (1967). Distribution for some sets of random matrices. Math. USSR, Sb. 1 457–483.
  • [22] Moon, H. R., Perron, B. and Phillips, P. C. B. (2007). Incidental trends and the power of panel unit root tests. J. Econometrics 141 416–459.
  • [23] Pan, G., Gao, J. and Yang, Y. (2014). Testing independence among a large number of high-dimensional random vectors. J. Amer. Statist. Assoc. 109 600–612.
  • [24] Paul, D. (2007). Asymptotics of sample eigenvalue structure for a large dimensional spiked covariance model. Statist. Sinica 17 1617–1642.
  • [25] Paul, D. and Aue, A. (2014). Random matrix theory in statistics: A review. J. Statist. Plann. Inference 150 1–29.
  • [26] Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-sectional dependence. J. Appl. Econometrics 22 265–312.
  • [27] Pesaran, M. H. (2015). Time Series and Panel Data Econometrics. Oxford Univ. Press, Oxford.
  • [28] Pesaran, M. H., Smith, L. V. and Yamagata, T. (2013). Panel unit root tests in the presence of a multifactor error structure. J. Econometrics 175 94–115.
  • [29] Phillips, P. and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika 75 335–346.
  • [30] Roy, S. N. (1939). $P$-statistics and some generalizations in analysis of variance appropriate to multivariate problems. Sankhyā 4 381–396.
  • [31] Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108 1033–1056.
  • [32] Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 151–174.
  • [33] Tracy, C. A. and Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 727–754.
  • [34] Yao, J. F., Zheng, S. R. and Bai, Z. D. (2015). Large Sample Covariance Matrices and High-Dimensional Data Analysis. Cambridge Univ. Press, Cambridge.
  • [35] Zhang, B., Pan, G. and Gao, J. (2018). Supplement to “CLT for largest eigenvalues and unit root testing for high-dimensional nonstationary time series.” DOI:10.1214/17-AOS1616SUPP.
  • [36] Zhang, L. (2006). Spectral analysis of large dimensional random matrices Ph.D. thesis, National University of Singapore.

Supplemental materials

  • Supplement to “CLT for largest eigenvalues and unit root testing for high-dimensional nonstationary time series”. The supplement [35] provides the proofs of the results in Appedix A and some more discussions about other models.