Open Access
February 2018 Local M-estimation with discontinuous criterion for dependent and limited observations
Myung Hwan Seo, Taisuke Otsu
Ann. Statist. 46(1): 344-369 (February 2018). DOI: 10.1214/17-AOS1552

Abstract

We examine the asymptotic properties of local M-estimators under three sets of high-level conditions. These conditions are sufficiently general to cover the minimum volume predictive region, the conditional maximum score estimator for a panel data discrete choice model and many other widely used estimators in statistics and econometrics. Specifically, they allow for discontinuous criterion functions of weakly dependent observations which may be localized by kernel smoothing and contain nuisance parameters with growing dimension. Furthermore, the localization can occur around parameter values rather than around a fixed point and the observations may take limited values which lead to set estimators. Our theory produces three different nonparametric cube root rates for local M-estimators and enables valid inference building on novel maximal inequalities for weakly dependent observations. The standard cube root asymptotics is included as a special case. The results are illustrated by various examples such as the Hough transform estimator with diminishing bandwidth, the maximum score-type set estimator and many others.

Citation

Download Citation

Myung Hwan Seo. Taisuke Otsu. "Local M-estimation with discontinuous criterion for dependent and limited observations." Ann. Statist. 46 (1) 344 - 369, February 2018. https://doi.org/10.1214/17-AOS1552

Information

Received: 1 March 2016; Revised: 1 October 2016; Published: February 2018
First available in Project Euclid: 22 February 2018

zbMATH: 06865114
MathSciNet: MR3766955
Digital Object Identifier: 10.1214/17-AOS1552

Subjects:
Primary: 62F12
Secondary: 60F17 , 60G15 , 62G20

Keywords: cube root asymptotics , maximal inequality , mixing process , parameter-dependent localization , partial identification

Rights: Copyright © 2018 Institute of Mathematical Statistics

Vol.46 • No. 1 • February 2018
Back to Top