The Annals of Statistics

Asymptotic normality of scrambled geometric net quadrature

Kinjal Basu and Rajarshi Mukherjee

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In a very recent work, Basu and Owen [Found. Comput. Math. 17 (2017) 467–496] propose the use of scrambled geometric nets in numerical integration when the domain is a product of $s$ arbitrary spaces of dimension $d$ having a certain partitioning constraint. It was shown that for a class of smooth functions, the integral estimate has variance $O(n^{-1-2/d}(\log n)^{s-1})$ for scrambled geometric nets compared to $O(n^{-1})$ for ordinary Monte Carlo. The main idea of this paper is to expand on the work by Loh [Ann. Statist. 31 (2003) 1282–1324] to show that the scrambled geometric net estimate has an asymptotic normal distribution for certain smooth functions defined on products of suitable subsets of $\mathbb{R}^{d}$.

Article information

Source
Ann. Statist., Volume 45, Number 4 (2017), 1759-1788.

Dates
Received: February 2016
Revised: July 2016
First available in Project Euclid: 28 June 2017

Permanent link to this document
https://projecteuclid.org/euclid.aos/1498636873

Digital Object Identifier
doi:10.1214/16-AOS1508

Mathematical Reviews number (MathSciNet)
MR3670195

Zentralblatt MATH identifier
1383.62042

Subjects
Primary: 62E20: Asymptotic distribution theory
Secondary: 62D05: Sampling theory, sample surveys 65D30: Numerical integration

Keywords
Asymptotic normality numerical integration quasi-Monte Carlo scrambled geometric net Stein’s method

Citation

Basu, Kinjal; Mukherjee, Rajarshi. Asymptotic normality of scrambled geometric net quadrature. Ann. Statist. 45 (2017), no. 4, 1759--1788. doi:10.1214/16-AOS1508. https://projecteuclid.org/euclid.aos/1498636873


Export citation

References

  • [1] Arvo, J., Fajardo, M. H. P., Jensen, H. W., Mitchell, D., Pharr, M. and Shirley, P. (2001). State of the art in Monte Carlo ray tracing for realistic image synthesis. In ACM Siggraph 2001 ACM, New York.
  • [2] Barbour, A. D. and Chen, L. H. Y. (2005). An Introduction to Stein’s Method 4. World Scientific, Singapore.
  • [3] Basu, K. and Mukherjee, R. (2017). Supplement to “Asymptotic normality of scrambled geometric net quadrature.” DOI:10.1214/16-AOS1508SUPP.
  • [4] Basu, K. (2015). Quasi-Monte Carlo tractability of high dimensional integration over products of simplices. J. Complexity 31 817–834.
  • [5] Basu, K. and Owen, A. B. (2015). Low discrepancy constructions in the triangle. SIAM J. Numer. Anal. 53 743–761.
  • [6] Basu, K. and Owen, A. B. (2016). Transformations and Hardy-Krause variation. SIAM J. Numer. Anal. 54 1946–1966.
  • [7] Basu, K. and Owen, A. B. (2017). Scrambled geometric net integration over general product spaces. Found. Comput. Math. 17 467–496.
  • [8] Brandolini, L., Colzani, L., Gigante, G. and Travaglini, G. (2013). A Koksma–Hlawka inequality for simplices. In Trends in Harmonic Analysis. Springer INdAM Ser. 3 33–46. Springer, Milan.
  • [9] Dick, J. and Pillichshammer, F. (2010). Digital Sequences, Discrepancy and Quasi-Monte Carlo Integration. Cambridge Univ. Press, Cambridge.
  • [10] Keller, A. (2013). Quasi-Monte Carlo image synthesis in a nutshell. In Monte Carlo and Quasi-Monte Carlo Methods 2012 (J. Dick, F. Y. Kuo, G. W. Peters and I. H. Sloan, eds.). Springer Proceedings in Mathematics & Statistics 65 213–249. Springer, Berlin.
  • [11] L’Ecuyer, P. and Lemieux, C. (2002). A survey of randomized quasi-Monte Carlo methods. In Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications (M. Dror, P. L’Ecuyer and F. Szidarovszki, eds.) 419–474. Kluwer Academic, Norwell.
  • [12] Loh, W.-L. (2003). On the asymptotic distribution of scrambled net quadrature. Ann. Statist. 31 1282–1324.
  • [13] Niederreiter, H. (1987). Point sets and sequences with small discrepancy. Monatsh. Math. 104 273–337.
  • [14] Owen, A. B. (1995). Randomly permuted $(t,m,s)$-nets and $(t,s)$-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P. J.-S. Shiue, eds.) 299–317. Springer-Verlag, New York.
  • [15] Owen, A. B. (1997). Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34 1884–1910.
  • [16] Owen, A. B. (1997). Scrambled net variance for integrals of smooth functions. Ann. Statist. 25 1541–1562.
  • [17] Owen, A. B. (1998). Scrambling Sobol’ and Niederreiter–Xing points. J. Complexity 14 466–489.
  • [18] Owen, A. B. (2003). Variance with alternative scramblings of digital nets. ACM Trans. Model. Comput. Simul. 13 363–378.
  • [19] Owen, A. B. (2008). Local antithetic sampling with scrambled nets. Ann. Statist. 36 2319–2343.
  • [20] Pillards, T. and Cools, R. (2004). A theoretical view on transforming low-discrepancy sequences from a cube to a simplex. Monte Carlo Methods Appl. 10 511–529.
  • [21] Pillards, T. and Cools, R. (2005). Transforming low-discrepancy sequences from a cube to a simplex. J. Comput. Appl. Math. 174 29–42.
  • [22] Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583–602. Univ. California Press, Berkeley, CA.
  • [23] Stromberg, K. R. (1994). Probability for Analysts. Chapman & Hall, New York.

Supplemental materials

  • Supplement to “Asymptotic normality of scrambled geometric net quadrature”. The supplementary material contain the proofs of supporting lemmas.