The Annals of Statistics

Sieve-based inference for infinite-variance linear processes

Giuseppe Cavaliere, Iliyan Georgiev, and A. M. Robert Taylor

Full-text: Open access


We extend the available asymptotic theory for autoregressive sieve estimators to cover the case of stationary and invertible linear processes driven by independent identically distributed (i.i.d.) infinite variance (IV) innovations. We show that the ordinary least squares sieve estimates, together with estimates of the impulse responses derived from these, obtained from an autoregression whose order is an increasing function of the sample size, are consistent and exhibit asymptotic properties analogous to those which obtain for a finite-order autoregressive process driven by i.i.d. IV errors. As these limit distributions cannot be directly employed for inference because they either may not exist or, where they do, depend on unknown parameters, a second contribution of the paper is to investigate the usefulness of bootstrap methods in this setting. Focusing on three sieve bootstraps: the wild and permutation bootstraps, and a hybrid of the two, we show that, in contrast to the case of finite variance innovations, the wild bootstrap requires an infeasible correction to be consistent, whereas the other two bootstrap schemes are shown to be consistent (the hybrid for symmetrically distributed innovations) under general conditions.

Article information

Ann. Statist., Volume 44, Number 4 (2016), 1467-1494.

Received: January 2015
Revised: November 2015
First available in Project Euclid: 7 July 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84] 62M15: Spectral analysis
Secondary: 62G09: Resampling methods

Bootstrap sieve autoregression infinite variance time series


Cavaliere, Giuseppe; Georgiev, Iliyan; Taylor, A. M. Robert. Sieve-based inference for infinite-variance linear processes. Ann. Statist. 44 (2016), no. 4, 1467--1494. doi:10.1214/15-AOS1419.

Export citation


  • Arcones, M. A. and Giné, E. (1989). The bootstrap of the mean with arbitrary bootstrap sample size. Ann. Inst. Henri Poincaré Probab. Stat. 25 457–481.
  • Athreya, K. B. (1987). Bootstrap of the mean in the infinite variance case. Ann. Statist. 15 724–731.
  • Berk, K. N. (1974). Consistent autoregressive spectral estimates. Ann. Statist. 2 489–502.
  • Böttcher, A. and Silbermann, B. (1999). Introduction to Large Truncated Toeplitz Matrices. Springer, New York.
  • Brillinger, D. R. (2001). Time Series: Data Analysis and Theory. Classics in Applied Mathematics 36. SIAM, Philadelphia, PA.
  • Calder, M. and Davis, R. A. (1998). Inference for linear processes with stable noise. In A Practical Guide to Heavy Tails: Statistical Techniques and Applications (R. Adler, R. Feldman and M. Taqqu, eds.) 159–176. Birkhäuser, Basel.
  • Cavaliere, G., Georgiev, I. and Taylor, A. M. R. (2013). Wild bootstrap of the sample mean in the infinite variance case. Econometric Rev. 32 204–219.
  • Cavaliere, G., Georgiev, I. and Taylor, A. (2016). Supplement to “Sieve-based inference for infinite-variance linear processes.” DOI:10.1214/15-AOS1419SUPP.
  • Cornea-Madeira, A. and Davidson, R. (2015). A parametric bootstrap for heavy-tailed distributions. Econometric Theory 31 449–470.
  • Davis, R. A. (2010). Heavy tails in financial time series. In Encyclopedia Quantitative Finance (R. Cont, ed.). Wiley, New York.
  • Davis, R. A., Knight, K. and Liu, J. (1992). $M$-estimation for autoregressions with infinite variance. Stochastic Process. Appl. 40 145–180.
  • Davis, R. and Resnick, S. (1985a). Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13 179–195.
  • Davis, R. and Resnick, S. (1985b). More limit theory for the sample correlation function of moving averages. Stochastic Process. Appl. 20 257–279.
  • Davis, R. and Resnick, S. (1986). Limit theory for the sample covariance and correlation functions of moving averages. Ann. Statist. 14 533–558.
  • Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events: For Insurance and Finance. Applications of Mathematics (New York) 33. Springer, Berlin.
  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York.
  • Finkenstädt, B. and Rootzén, H. (2003). Extreme Values in Finance, Telecommunication and the Environment. Chapman & Hall, London.
  • Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics 1 255–293.
  • Gonçalves, S. and Kilian, L. (2007). Asymptotic and bootstrap inference for $\mathrm{AR}(\infty)$ processes with conditional heteroskedasticity. Econometric Rev. 26 609–641.
  • Hannan, E. J. and Kanter, M. (1977). Autoregressive processes with infinite variance. J. Appl. Probab. 14 411–415.
  • Hill, J. B. (2013). Least tail-trimmed squares for infinite variance autoregressions. J. Time Series Anal. 34 168–186.
  • Jaffard, S. (1990). Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 461–476.
  • Knight, K. (1987). Rate of convergence of centred estimates of autoregressive parameters for infinite variance autoregressions. J. Time Series Anal. 8 51–60.
  • Knight, K. (1989). On the bootstrap of the sample mean in the infinite variance case. Ann. Statist. 17 1168–1175.
  • Kreiss, J.-P. (1997). Asymptotic properties of residual bootstrap for autoregression. Technical report, TU Braunschweig. Available at
  • Kreiss, J.-P., Paparoditis, E. and Politis, D. N. (2011). On the range of validity of the autoregressive sieve bootstrap. Ann. Statist. 39 2103–2130.
  • LePage, R. (1992). Bootstrapping signs. In Exploring the Limits of the Bootstrap (R. Lepage and L. Billard, eds.) 215–224. Wiley, New York.
  • LePage, R. and Podgórski, K. (1996). Resampling permutations in regression without second moments. J. Multivariate Anal. 57 119–141.
  • LePage, R., Woodroofe, M. and Zinn, J. (1981). Convergence to a stable distribution via order statistics. Ann. Probab. 9 624–632.
  • Lewis, R. and Reinsel, G. C. (1985). Prediction of multivariate time series by autoregressive model fitting. J. Multivariate Anal. 16 393–411.
  • Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics: Theory and Methods. Wiley, Chichester.
  • McCulloch, J. H. (1997). Measuring tail thickness to estimate the stable index $\alpha$: A critique. J. Bus. Econom. Statist. 15 74–81.
  • Paparoditis, E. (1996). Bootstrapping autoregressive and moving average parameter estimates of infinite order vector autoregressive processes. J. Multivariate Anal. 57 277–296.
  • Pötscher, B. M. and Leeb, H. (2009). On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding. J. Multivariate Anal. 100 2065–2082.
  • Resnick, S. I. (1997). Heavy tail modeling and teletraffic data. Ann. Statist. 25 1805–1869.
  • Samworth, R. (2003). A note on methods of restoring consistency to the bootstrap. Biometrika 90 985–990.
  • Silverberg, G. and Verspagen, B. (2007). The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance. J. Econometrics 139 318–339.
  • Strohmer, T. (2002). Four short stories about Toeplitz matrix calculations. Linear Algebra Appl. 343/344 321–344.

Supplemental materials

  • Supplement to “Sieve-based inference for infinite-variance linear processes”. In this supplement, which contains additional theoretical results and proofs, we provide: a lemma with two tail inequalities regarding the series of the coefficients from the AR($\infty $) representations; a proof of Lemma 2 and corollaries from Section 6; proofs of the results given in Section 7.3.1; a discussion of multiple restrictions.