The Annals of Statistics

Vector quantile regression: An optimal transport approach

Guillaume Carlier, Victor Chernozhukov, and Alfred Galichon

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector $Y$, taking values in $\mathbb{R}^{d}$ given covariates $Z=z$, taking values in $\mathbb{R}^{k}$, is a map $u\longmapsto Q_{Y|Z}(u,z)$, which is monotone, in the sense of being a gradient of a convex function, and such that given that vector $U$ follows a reference non-atomic distribution $F_{U}$, for instance uniform distribution on a unit cube in $\mathbb{R}^{d}$, the random vector $Q_{Y|Z}(U,z)$ has the distribution of $Y$ conditional on $Z=z$. Moreover, we have a strong representation, $Y=Q_{Y|Z}(U,Z)$ almost surely, for some version of $U$. The vector quantile regression (VQR) is a linear model for CVQF of $Y$ given $Z$. Under correct specification, the notion produces strong representation, $Y=\beta (U)^{\top}f(Z)$, for $f(Z)$ denoting a known set of transformations of $Z$, where $u\longmapsto\beta(u)^{\top}f(Z)$ is a monotone map, the gradient of a convex function and the quantile regression coefficients $u\longmapsto\beta(u)$ have the interpretations analogous to that of the standard scalar quantile regression. As $f(Z)$ becomes a richer class of transformations of $Z$, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge–Kantorovich’s optimal transportation problem at its core as a special case. In the classical case, where $Y$ is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. An application to multiple Engel curve estimation is considered.

Article information

Ann. Statist. Volume 44, Number 3 (2016), 1165-1192.

Received: June 2015
Revised: September 2015
First available in Project Euclid: 11 April 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62J99: None of the above, but in this section
Secondary: 62H05: Characterization and structure theory 62G05: Estimation

Vector quantile regression vector conditional quantile function Monge–Kantorovich–Brenier


Carlier, Guillaume; Chernozhukov, Victor; Galichon, Alfred. Vector quantile regression: An optimal transport approach. Ann. Statist. 44 (2016), no. 3, 1165--1192. doi:10.1214/15-AOS1401.

Export citation


  • [1] Belloni, A. and Winkler, R. L. (2011). On multivariate quantiles under partial orders. Ann. Statist. 39 1125–1179.
  • [2] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 375–417.
  • [3] Carlier, G., Chernozhulov, V. and Galichon, A. (2015). Supplement to “Vector quantile regression: An optimal transport approach.” DOI:10.1214/15-AOS1401SUPP.
  • [4] Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91 862–872.
  • [5] Chernozhukov, V., Fernández-Val, I. and Galichon, A. (2010). Quantile and probability curves without crossing. Econometrica 78 1093–1125.
  • [6] Cunha, F., Heckman, J. and Schennach, S. (2010). Estimating the technology of cognitive and noncognitive skill formation. Econometrica 78 883–931.
  • [7] Doksum, K. (1974). Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann. Statist. 2 267–277.
  • [8] Ducpetiaux, E. (1855). Budgets économiques des Classes Ouvrières en Belgique, Bruxelles.
  • [9] Dudley, R. M. and Philipp, W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. Verw. Gebiete 62 509–552.
  • [10] Ekeland, I., Galichon, A. and Henry, M. (2012). Comonotonic measures of multivariate risks. Math. Finance 22 109–132.
  • [11] Ekeland, I. and Témam, R. (1999). Convex Analysis and Variational Problems, English ed. Classics in Applied Mathematics 28. SIAM, Philadelphia, PA.
  • [12] Engel, E. (1857). Die Produktions und Konsumptionsverhältnisse des Königreichs Sachsen. Zeitschrift des Statistischen Bureaus des Königlich Sächsischen Misisteriums des Innerm 8 1–54.
  • [13] Hallin, M., Paindaveine, D. and Šiman, M. (2010). Multivariate quantiles and multiple-output regression quantiles: From $L_{1}$ optimization to halfspace depth. Ann. Statist. 38 635–669.
  • [14] Koenker, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge Univ. Press, Cambridge.
  • [15] Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. Econometrica 46 33–50.
  • [16] Koenker, R. and Bassett, G. Jr. (1982). Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50 43–61.
  • [17] Koltchinskii, V. I. (1997). $M$-estimation, convexity and quantiles. Ann. Statist. 25 435–477.
  • [18] Kong, L. and Mizera, I. (2012). Quantile tomography: Using quantiles with multivariate data. Statist. Sinica 22 1589–1610.
  • [19] Lehmann, E. L. (1974). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco, CA.
  • [20] Le Play, F. (1855). Les Ouvriers Européens. Etudes sur les travaux, la vie domestique et la condition morale des populations ouvrières de l’Europe. Paris.
  • [21] Matzkin, R. L. (2003). Nonparametric estimation of nonadditive random functions. Econometrica 71 1339–1375.
  • [22] McCann, R. J. (1995). Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 309–323.
  • [23] Serfling, R. (2004). Nonparametric multivariate descriptive measures based on spatial quantiles. J. Statist. Plann. Inference 123 259–278.
  • [24] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI.
  • [25] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin.
  • [26] Wei, Y. (2008). An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts. J. Amer. Statist. Assoc. 103 397–409.
  • [27] Yu, K. and Jones, M. C. (1998). Local linear quantile regression. J. Amer. Statist. Assoc. 93 228–237.

Supplemental materials

  • Supplement to “Vector quantile regression”. In the online supplement [3], we provide additional results for Sections 2 and 3, including a proof of duality for CVQF and Linear VQR, and the measurability claims for Theorem 2.1.