The Annals of Statistics

Optimal designs for comparing curves

Holger Dette and Kirsten Schorning

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the optimal design problem for a comparison of two regression curves, which is used to establish the similarity between the dose response relationships of two groups. An optimal pair of designs minimizes the width of the confidence band for the difference between the two regression functions. Optimal design theory (equivalence theorems, efficiency bounds) is developed for this non-standard design problem and for some commonly used dose response models optimal designs are found explicitly. The results are illustrated in several examples modeling dose response relationships. It is demonstrated that the optimal pair of designs for the comparison of the regression curves is not the pair of the optimal designs for the individual models. In particular, it is shown that the use of the optimal designs proposed in this paper instead of commonly used “non-optimal” designs yields a reduction of the width of the confidence band by more than $50\%$.

Article information

Source
Ann. Statist., Volume 44, Number 3 (2016), 1103-1130.

Dates
Received: June 2015
Revised: September 2015
First available in Project Euclid: 11 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.aos/1460381688

Digital Object Identifier
doi:10.1214/15-AOS1399

Mathematical Reviews number (MathSciNet)
MR3485955

Zentralblatt MATH identifier
1338.62162

Subjects
Primary: 62K05: Optimal designs

Keywords
Similarity of regression curves confidence band optimal design robust design

Citation

Dette, Holger; Schorning, Kirsten. Optimal designs for comparing curves. Ann. Statist. 44 (2016), no. 3, 1103--1130. doi:10.1214/15-AOS1399. https://projecteuclid.org/euclid.aos/1460381688


Export citation

References

  • Antille, G., Dette, H. and Weinberg, A. (2003). A note on optimal designs in weighted polynomial regression for the classical efficiency functions. J. Statist. Plann. Inference 113 285–292.
  • Bonyadi, M. R. and Michalewicz, Z. (2014). A locally convergent rotationally invariant particle swarm optimization algorithm. Swarm Intell. 8 159–198.
  • Bretz, F., Pinheiro, J. C. and Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics 61 738–748.
  • Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 273–304.
  • Chang, F.-C. (2005a). $D$-optimal designs for weighted polynomial regression—a functional-algebraic approach. Statist. Sinica 15 153–163.
  • Chang, F.-C. (2005b). $D$-optimal designs for weighted polynomial regression—a functional approach. Ann. Inst. Statist. Math. 57 833–844.
  • Chernoff, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Stat. 24 586–602.
  • Clerc, M. (2006). Particle Swarm Optimization. ISTE, London.
  • Dette, H. (1990). A generalization of $D$- and $D_{1}$-optimal designs in polynomial regression. Ann. Statist. 18 1784–1804.
  • Dette, H. (1993). A note on $E$-optimal designs for weighted polynomial regression. Ann. Statist. 21 767–771.
  • Dette, H. (1997). Designing experiments with respect to “standardized” optimality criteria. J. Roy. Statist. Soc. Ser. B 59 97–110.
  • Dette, H., Bornkamp, B. and Bretz, F. (2013). On the efficiency of two-stage response-adaptive designs. Stat. Med. 32 1646–1660.
  • Dette, H. and Melas, V. B. (2011). A note on the de la Garza phenomenon for locally optimal designs. Ann. Statist. 39 1266–1281.
  • Dette, H. and Neumeyer, N. (2001). Nonparametric analysis of covariance. Ann. Statist. 29 1361–1400.
  • Dette, H., Pepelyshev, A. and Zhigljavsky, A. (2008). Improving updating rules in multiplicative algorithms for computing $D$-optimal designs. Comput. Statist. Data Anal. 53 312–320.
  • Dette, H. and Trampisch, M. (2010). A general approach to $D$-optimal designs for weighted univariate polynomial regression models. J. Korean Statist. Soc. 39 1–26.
  • Dette, H., Bretz, F., Pepelyshev, A. and Pinheiro, J. (2008). Optimal designs for dose-finding studies. J. Amer. Statist. Assoc. 103 1225–1237.
  • Dragalin, V., Bornkamp, B., Bretz, F., Miller, F., Padmanabhan, S. K., Patel, N., Perevozskaya, I., Pinheiro, J. and Smith, J. R. (2010). A simulation study to compare new adaptive dose-ranging designs. Stat. Biopharm. Res. 2 487–512.
  • Gsteiger, S., Bretz, F. and Liu, W. (2011). Simultaneous confidence bands for nonlinear regression models with application to population pharmacokinetic analyses. J. Biopharm. Statist. 21 708–725.
  • Hall, P. and Hart, J. D. (1990). Bootstrap test for difference between means in nonparametric regression. J. Amer. Statist. Assoc. 85 1039–1049.
  • Heiligers, B. (1994). $E$-optimal designs in weighted polynomial regression. Ann. Statist. 22 917–929.
  • Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley, New York.
  • Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849–879.
  • Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canad. J. Math. 12 363–366.
  • Lau, T.-S. and Studden, W. J. (1985). Optimal designs for trigonometric and polynomial regression using canonical moments. Ann. Statist. 13 383–394.
  • Läuter, E. (1974). Experimental design in a class of models. Math. Operationsforsch. Statist. 5 379–398.
  • Liu, W., Jamshidian, M. and Zhang, Y. (2004). Multiple comparison of several linear regression models. J. Amer. Statist. Assoc. 99 395–403.
  • Liu, W., Bretz, F., Hayter, A. J. and Wynn, H. P. (2009). Assessing nonsuperiority, noninferiority, or equivalence when comparing two regression models over a restricted covariate region. Biometrics 65 1279–1287.
  • Pshenichnyi, B. N. (1971). Necessary Conditions for an Extremum. Dekker, New York.
  • Pukelsheim, F. (2006). Optimal Design of Experiments. Classics in Applied Mathematics 50. SIAM, Philadelphia, PA.
  • Pukelsheim, F. and Rieder, S. (1992). Efficient rounding of approximate designs. Biometrika 79 763–770.
  • van den Bergh, F. and Engelbrecht, A. P. (2010). A convergence proof for the particle swarm optimiser. Fund. Inform. 105 341–374.
  • Wong, W. K. and Cook, R. D. (1993). Heteroscedastic $G$-optimal designs. J. Roy. Statist. Soc. Ser. B 55 871–880.
  • Yang, M. (2010). On the de la Garza phenomenon. Ann. Statist. 38 2499–2524.
  • Yang, M., Biedermann, S. and Tang, E. (2013). On optimal designs for nonlinear models: A general and efficient algorithm. J. Amer. Statist. Assoc. 108 1411–1420.
  • Yu, Y. (2010). Monotonic convergence of a general algorithm for computing optimal designs. Ann. Statist. 38 1593–1606.
  • Zen, M.-M. and Tsai, M.-H. (2004). Criterion-robust optimal designs for model discrimination and parameter estimation in Fourier regression models. J. Statist. Plann. Inference 124 475–487.