Annals of Statistics
- Ann. Statist.
- Volume 44, Number 2 (2016), 853-875.
Estimation in exponential families on permutations
Full-text: Open access
Abstract
Asymptotics of the normalizing constant are computed for a class of one parameter exponential families on permutations which include Mallows models with Spearmans’s Footrule and Spearman’s Rank Correlation Statistic. The MLE and a computable approximation of the MLE are shown to be consistent. The pseudo-likelihood estimator of Besag is shown to be $\sqrt{n}$-consistent. An iterative algorithm (IPFP) is proved to converge to the limiting normalizing constant. The Mallows model with Kendall’s tau is also analyzed to demonstrate the flexibility of the tools of this paper.
Article information
Source
Ann. Statist., Volume 44, Number 2 (2016), 853-875.
Dates
Received: May 2015
Revised: September 2015
First available in Project Euclid: 17 March 2016
Permanent link to this document
https://projecteuclid.org/euclid.aos/1458245737
Digital Object Identifier
doi:10.1214/15-AOS1389
Mathematical Reviews number (MathSciNet)
MR3476619
Zentralblatt MATH identifier
1341.62083
Subjects
Primary: 62F12: Asymptotic properties of estimators 60F10: Large deviations
Secondary: 05A05: Permutations, words, matrices
Keywords
Permutation normalizing constant Mallows model pseudo-likelihood
Citation
Mukherjee, Sumit. Estimation in exponential families on permutations. Ann. Statist. 44 (2016), no. 2, 853--875. doi:10.1214/15-AOS1389. https://projecteuclid.org/euclid.aos/1458245737
References
- [1] Aas, K., Czado, C., Frigessi, A. and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44 182–198.Mathematical Reviews (MathSciNet): MR2517884
- [2] Andersen, H. C. and Diaconis, P. (2007). Hit and run as a unifying device. J. Soc. Fr. Stat. & Rev. Stat. Appl. 148 5–28.Mathematical Reviews (MathSciNet): MR2502361
- [3] Awasthi, P., Blum, A., Sheffet, O. and Vijayaraghavan, A. (2014). Learning mixtures of ranking models. In Advances in Neural Information Processing Systems 27 2609–2617. Curran Associates, Inc. Montreal.
- [4] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B 36 192–236.Mathematical Reviews (MathSciNet): MR373208
- [5] Besag, J. (1975). Statistical analysis of non-lattice data. J. R. Stat. Soc., Ser. D Stat. 24 179–195.
- [6] Bhattacharya, B. and Mukherjee, S. (2015). Degree Sequence of Random Permutation Graphs. Preprint. Available at arXiv:1503.03582.arXiv: 1503.0358
Mathematical Reviews (MathSciNet): MR3273535
Zentralblatt MATH: 1301.05078
Digital Object Identifier: doi:10.1016/j.disc.2014.08.012 - [7] Brigo, D., Pallavicini, A. and Torresetti, R. (2010). Credit Models and the Crisis: A Journey Into CDOs, Copulas, Correlations and Dynamic Models. Wiley, New York.
- [8] Chen, H., Branavan, S. R. K., Barzilay, R. and Karger, D. R. (2009). Content modeling using latent permutations. J. Artificial Intelligence Res. 36 129–163.
- [9] Critchlow, D. E. (1985). Metric Methods for Analyzing Partially Ranked Data. Lecture Notes in Statistics 34. Springer, Berlin.
- [10] Critchlow, D. E., Fligner, M. A. and Verducci, J. S. (1991). Probability models on rankings. J. Math. Psych. 35 294–318.Mathematical Reviews (MathSciNet): MR1128236
Zentralblatt MATH: 0741.62024
Digital Object Identifier: doi:10.1016/0022-2496(91)90050-4 - [11] Csiszár, I. (1975). $I$-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 146–158.
- [12] Deming, W. E. and Stephan, F. F. (1940). On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11 427–444.Mathematical Reviews (MathSciNet): MR3527
Digital Object Identifier: doi:10.1214/aoms/1177731829
Project Euclid: euclid.aoms/1177731829 - [13] Diaconis, P. (1988). Group Representations in Probability and Statistics. Institute of Mathematical Statistics Lecture Notes—Monograph Series 11. IMS, Hayward, CA.
- [14] Diaconis, P., Graham, R. and Holmes, S. P. (2001). Statistical problems involving permutations with restricted positions. In State of the Art in Probability and Statistics (Leiden, 1999). Institute of Mathematical Statistics Lecture Notes—Monograph Series 36 195–222. IMS, Beachwood, OH.
- [15] Diaconis, P. and Ram, A. (2000). Analysis of systematic scan Metropolis algorithms using Iwahori–Hecke algebra techniques. Michigan Math. J. 48 157–190.Mathematical Reviews (MathSciNet): MR1786485
Zentralblatt MATH: 0998.60069
Digital Object Identifier: doi:10.1307/mmj/1030132713
Project Euclid: euclid.mmj/1030132713 - [16] Feigin, P. and Cohen, A. (1978). On a model of concordance between judges. J. R. Stat. Soc. Ser. B. Stat. Methodol. 40 203–213.
- [17] Fienberg, S. (1971). Randomization and social affairs, the 1970 draft lottery. Science 171 255–261.
- [18] Fligner, M. A. and Verducci, J. S. (1986). Distance based ranking models. J. Roy. Statist. Soc. Ser. B 48 359–369.Mathematical Reviews (MathSciNet): MR876847
- [19] Fligner, M. A. and Verducci, J. S. (1988). Multistage ranking models. J. Amer. Statist. Assoc. 83 892–901.Mathematical Reviews (MathSciNet): MR963820
Zentralblatt MATH: 0719.62036
Digital Object Identifier: doi:10.1080/01621459.1988.10478679 - [20] Genest, C. and MacKay, J. (1986). The joy of copulas: Bivariate distributions with uniform marginals. Amer. Statist. 40 280–283.Mathematical Reviews (MathSciNet): MR866908
- [21] Hoeffding, W. (1951). A combinatorial central limit theorem. Ann. Math. Stat. 22 558–566.Mathematical Reviews (MathSciNet): MR44058
Zentralblatt MATH: 0044.13702
Digital Object Identifier: doi:10.1214/aoms/1177729545
Project Euclid: euclid.aoms/1177729545 - [22] Hoppen, C., Kohayakawa, Y., Moreira, C. G., Ráth, B. and Menezes Sampaio, R. (2013). Limits of permutation sequences. J. Combin. Theory Ser. B 103 93–113.Mathematical Reviews (MathSciNet): MR2995721
Zentralblatt MATH: 1255.05174
Digital Object Identifier: doi:10.1016/j.jctb.2012.09.003 - [23] Huang, J., Guestrin, C. and Guibas, L. (2009). Fourier theoretic probabilistic inference over permutations. J. Mach. Learn. Res. 10 997–1070.
- [24] Irurozki, E., Calvo, B. and Lozano, A. (2014). Sampling and learning the Mallows and Generalized Mallows models under the Cayley distance. Technical report. Available at https://addi.ehu.es/handle/10810/11239.
- [25] Irurozki, E., Calvo, B. and Lozano, A. (2014). Sampling and learning the Mallows model under the Ulam distance. Technical report. Available at https://addi.ehu.es/handle/10810/11241.
- [26] Irurozki, E., Calvo, B. and Lozano, A. (2014). Sampling and learning the Mallows and Weighted Mallows models under the Hamming distance. Technical report. Available at https://addi.ehu.es/handle/10810/11240.
- [27] Jaworski, P., Durante, F., Härdle, W. and Rychlik, T. (2010). Copula theory and its applications. In Proceedings of the Workshop Held at the University of Warsaw, Warsaw, September 25–26, 2009. Lecture Notes in Statistics—Proceedings 198. Springer, Heidelberg.Mathematical Reviews (MathSciNet): MR3075361
- [28] Kondor, R., Howard, A. and Jebara, T. (2007). Multi-object tracking with representations of the symmetric group. In AISTATS 2 211–218.
- [29] Kullback, S. (1968). Probability densities with given marginals. Ann. Math. Stat. 39 1236–1243.Mathematical Reviews (MathSciNet): MR229330
Zentralblatt MATH: 0165.20303
Digital Object Identifier: doi:10.1214/aoms/1177698249
Project Euclid: euclid.aoms/1177698249 - [30] Lebanon, G. and Lafferty, J. (2002). Cranking: Combining rankings using conditional probability models on permutations. In Proceedings of the 19th International Conference on Machine Learning 363–370. Morgan Kaufmann, San Francisco, CA.
- [31] Lebanon, G. and Mao, Y. (2008). Non-parametric modeling of partially ranked data. J. Mach. Learn. Res. 9 2401–2429.
- [32] Lovász, L. (2012). Large Networks and Graph Limits. American Mathematical Society Colloquium Publications 60. Amer. Math. Soc., Providence, RI.Mathematical Reviews (MathSciNet): MR3012035
- [33] Mai, J.-F. and Scherer, M. (2012). Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. Series in Quantitative Finance 4. Imperial College Press, London.
- [34] Mallows, C. L. (1957). Non-null ranking models. I. Biometrika 44 114–130.Mathematical Reviews (MathSciNet): MR87267
Zentralblatt MATH: 0087.34001
Digital Object Identifier: doi:10.1093/biomet/44.1-2.114 - [35] Marden, J. I. (1995). Analyzing and Modeling Rank Data. Monographs on Statistics and Applied Probability 64. Chapman & Hall, London.
- [36] McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton Univ. Press, Princeton, NJ.
- [37] McNeil, A. J. and Nešlehová, J. (2009). Multivariate Archimedean copulas, $d$-monotone functions and $l_{1}$-norm symmetric distributions. Ann. Statist. 37 3059–3097.Mathematical Reviews (MathSciNet): MR2541455
Zentralblatt MATH: 1173.62044
Digital Object Identifier: doi:10.1214/07-AOS556
Project Euclid: euclid.aos/1247836677 - [38] Meila, M. and Bao, L. (2008). Estimation and clustering with infinite rankings. In Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence 393–402. Helsinki.
- [39] Meilă, M. and Bao, L. (2010). An exponential model for infinite rankings. J. Mach. Learn. Res. 11 3481–3518.
- [40] Meila, M., Phadnis, K., Patterson, A. and Blimes, J. (2007). Consensus ranking under the exponential model, Technical Report 515, Dept. Statistics, Univ. Washington, Seattle, WA.
- [41] Meucci, A. (2011). A new breed of copulas for risk and portfolio management. Risk 24 122–126.
- [42] Mukherjee, S. (2015). Supplement to “Estimation in exponential families on permutations.” DOI:10.1214/15-AOS1389SUPP.
- [43] Nelsen, R. B. (1999). An Introduction to Copulas. Lecture Notes in Statistics 139. Springer, New York.Mathematical Reviews (MathSciNet): MR1653203
- [44] Rüschendorf, L. (1995). Convergence of the iterative proportional fitting procedure. Ann. Statist. 23 1160–1174.Mathematical Reviews (MathSciNet): MR1353500
Zentralblatt MATH: 0851.62038
Digital Object Identifier: doi:10.1214/aos/1176324703
Project Euclid: euclid.aos/1176324703 - [45] Ruschendorf, L., Schweizer, B. and Taylor, M. (1997). Distributions with Fixed Marginals & Related Topics. Lecture Notes—Monograph Series 28. IMS, Hayward, CA.
- [46] Schweizer, B. and Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. Ann. Statist. 9 879–885.Mathematical Reviews (MathSciNet): MR619291
Zentralblatt MATH: 0468.62012
Digital Object Identifier: doi:10.1214/aos/1176345528
Project Euclid: euclid.aos/1176345528 - [47] Sinkhorn, R. (1964). A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35 876–879.Mathematical Reviews (MathSciNet): MR161868
Zentralblatt MATH: 0134.25302
Digital Object Identifier: doi:10.1214/aoms/1177703591
Project Euclid: euclid.aoms/1177703591 - [48] Sklar, M. (1959). Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 229–231.Mathematical Reviews (MathSciNet): MR125600
- [49] Starr, S. (2009). Thermodynamic limit for the Mallows model on $S_{n}$. J. Math. Phys. 50 095208, 15.Mathematical Reviews (MathSciNet): MR2566888
Zentralblatt MATH: 1241.82039
Digital Object Identifier: doi:10.1063/1.3156746 - [50] Trashorras, J. (2008). Large deviations for symmetrised empirical measures. J. Theoret. Probab. 21 397–412.Mathematical Reviews (MathSciNet): MR2391251
Zentralblatt MATH: 1142.60020
Digital Object Identifier: doi:10.1007/s10959-007-0121-y - [51] Whitt, W. (1976). Bivariate distributions with given marginals. Ann. Statist. 4 1280–1289.Mathematical Reviews (MathSciNet): MR426099
Zentralblatt MATH: 0367.62022
Digital Object Identifier: doi:10.1214/aos/1176343660
Project Euclid: euclid.aos/1176343660
Supplemental materials
- Supplement to “Estimation in exponential families on permutations”. The supplementary material contain the proofs of all theorems, corollaries, propositions and supporting lemmas. It also states Proposition 2.2, which deals with the joint limiting distribution of $\{\pi(1),\ldots,\pi(n)\}$ for $\pi$ from either the model $\mathbb{Q}_{n,f,\theta}$ of (1.1) or from the Mallows model with Kendall’s tau of Proposition 1.12. A short proof of this proposition is included using the more recent results of [6].Digital Object Identifier: doi:10.1214/15-AOS1389SUPP

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A consistent test of independence based on a sign covariance related to Kendall’s tau
Bergsma, Wicher and Dassios, Angelos, Bernoulli, 2014 - Mallows and generalized Mallows model for matchings
Irurozki, Ekhine, Calvo, Borja, and Lozano, Jose A., Bernoulli, 2019 - Fixed points and cycle structure of random permutations
Mukherjee, Sumit, Electronic Journal of Probability, 2016
- A consistent test of independence based on a sign covariance related to Kendall’s tau
Bergsma, Wicher and Dassios, Angelos, Bernoulli, 2014 - Mallows and generalized Mallows model for matchings
Irurozki, Ekhine, Calvo, Borja, and Lozano, Jose A., Bernoulli, 2019 - Fixed points and cycle structure of random permutations
Mukherjee, Sumit, Electronic Journal of Probability, 2016 - Penalized log-likelihood estimation for partly linear transformation models with current status data
Ma, Shuangge and Kosorok, Michael R., Annals of Statistics, 2005 - On kernel methods for covariates that are rankings
Mania, Horia, Ramdas, Aaditya, Wainwright, Martin J., Jordan, Michael I., and Recht, Benjamin, Electronic Journal of Statistics, 2018 - Monte Carlo maximum likelihood estimation for discretely observed diffusion processes
Beskos, Alexandros, Papaspiliopoulos, Omiros, and Roberts, Gareth, Annals of Statistics, 2009 - Current status linear regression
Groeneboom, Piet and Hendrickx, Kim, Annals of Statistics, 2018 - Multivariate Nonparametric Tests
Oja, Hannu and Randles, Ronald H., Statistical Science, 2004 - Curvature and inference for maximum likelihood estimates
Efron, Bradley, Annals of Statistics, 2018 - High-dimensional semiparametric Gaussian copula graphical models
Liu, Han, Han, Fang, Yuan, Ming, Lafferty, John, and Wasserman, Larry, Annals of Statistics, 2012
