Annals of Statistics

Functional data analysis for density functions by transformation to a Hilbert space

Alexander Petersen and Hans-Georg Müller

Full-text: Open access

Abstract

Functional data that are nonnegative and have a constrained integral can be considered as samples of one-dimensional density functions. Such data are ubiquitous. Due to the inherent constraints, densities do not live in a vector space and, therefore, commonly used Hilbert space based methods of functional data analysis are not applicable. To address this problem, we introduce a transformation approach, mapping probability densities to a Hilbert space of functions through a continuous and invertible map. Basic methods of functional data analysis, such as the construction of functional modes of variation, functional regression or classification, are then implemented by using representations of the densities in this linear space. Representations of the densities themselves are obtained by applying the inverse map from the linear functional space to the density space. Transformations of interest include log quantile density and log hazard transformations, among others. Rates of convergence are derived for the representations that are obtained for a general class of transformations under certain structural properties. If the subject-specific densities need to be estimated from data, these rates correspond to the optimal rates of convergence for density estimation. The proposed methods are illustrated through simulations and applications in brain imaging.

Article information

Source
Ann. Statist., Volume 44, Number 1 (2016), 183-218.

Dates
Received: December 2014
Revised: July 2015
First available in Project Euclid: 10 December 2015

Permanent link to this document
https://projecteuclid.org/euclid.aos/1449755961

Digital Object Identifier
doi:10.1214/15-AOS1363

Mathematical Reviews number (MathSciNet)
MR3449766

Zentralblatt MATH identifier
1331.62203

Subjects
Primary: 62G05: Estimation
Secondary: 62G07: Density estimation 62G20: Asymptotic properties

Keywords
Basis representation kernel estimation log hazard prediction quantiles samples of density functions rate of convergence Wasserstein metric

Citation

Petersen, Alexander; Müller, Hans-Georg. Functional data analysis for density functions by transformation to a Hilbert space. Ann. Statist. 44 (2016), no. 1, 183--218. doi:10.1214/15-AOS1363. https://projecteuclid.org/euclid.aos/1449755961


Export citation

References

  • [1] Achard, S., Salvador, R., Whitcher, B., Suckling, J. and Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 63–72.
  • [2] Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T. and Calhoun, V. D. (2012). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex bhs352.
  • [3] Ash, R. B. and Gardner, M. F. (1975). Topics in Stochastic Processes. Academic Press, New York.
  • [4] Bali, J. L., Boente, G., Tyler, D. E. and Wang, J.-L. (2011). Robust functional principal components: A projection-pursuit approach. Ann. Statist. 39 2852–2882.
  • [5] Bassett, D. S. and Bullmore, E. (2006). Small-world brain networks. Neuroscientist 12 512–523.
  • [6] Benko, M., Härdle, W. and Kneip, A. (2009). Common functional principal components. Ann. Statist. 37 1–34.
  • [7] Besse, P. and Ramsay, J. O. (1986). Principal components analysis of sampled functions. Psychometrika 51 285–311.
  • [8] Bolstad, B. M., Irizarry, R. A., Åstrand, M. and Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19 185–193.
  • [9] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Lecture Notes in Statistics 149. Springer, New York.
  • [10] Bouezmarni, T. and Rolin, J.-M. (2003). Consistency of the beta kernel density function estimator. Canad. J. Statist. 31 89–98.
  • [11] Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A. and Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29 1860–1873.
  • [12] Cai, T. T. and Hall, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159–2179.
  • [13] Castro, P. E., Lawton, W. H. and Sylvestre, E. A. (1986). Principal modes of variation for processes with continuous sample curves. Technometrics 28 329–337.
  • [14] Chen, S. X. (1999). Beta kernel estimators for density functions. Comput. Statist. Data Anal. 31 131–145.
  • [15] Cowling, A. and Hall, P. (1996). On pseudodata methods for removing boundary effects in kernel density estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol. 58 551–563.
  • [16] Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136–154.
  • [17] Delicado, P. (2011). Dimensionality reduction when data are density functions. Comput. Statist. Data Anal. 55 401–420.
  • [18] Devroye, L. and Györfi, L. (1985). Nonparametric Density Estimation: The $L_{1}$ View. Wiley, New York.
  • [19] Dubin, J. A. and Müller, H.-G. (2005). Dynamical correlation for multivariate longitudinal data. J. Amer. Statist. Assoc. 100 872–881.
  • [20] Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Statist. 27 642–669.
  • [21] Egozcue, J. J., Diaz-Barrero, J. L. and Pawlowsky-Glahn, V. (2006). Hilbert space of probability density functions based on Aitchison geometry. Acta Math. Sin. (Engl. Ser.) 22 1175–1182.
  • [22] Ferreira, L. K. and Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience & Biobehavioral Reviews 37 384–400.
  • [23] Fletcher, P. T., Lu, C., Pizer, S. M. and Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging 23 995–1005.
  • [24] Gajek, L. (1986). On improving density estimators which are not Bona fide functions. Ann. Statist. 14 1612–1618.
  • [25] Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70–91.
  • [26] Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 109–126.
  • [27] Hall, P., Müller, H.-G. and Wang, J.-L. (2006). Properties of principal component methods for functional and longitudinal data analysis. Ann. Statist. 34 1493–1517.
  • [28] Höffding, W. (1940). Maszstabinvariante Korrelationstheorie. Schr. Math. Inst. U. Inst. Angew. Math. Univ. Berlin 5 181–233.
  • [29] Hron, K., Menafoglio, A., Templ, M., Hruzova, K. and Filzmoser, P. (2014). Simplicial principal component analysis for density functions in Bayes spaces. MOX-report 25 2014.
  • [30] Jones, M. C. (1992). Estimating densities, quantiles, quantile densities and density quantiles. Ann. Inst. Statist. Math. 44 721–727.
  • [31] Jones, M. C. and Rice, J. A. (1992). Displaying the important features of large collections of similar curves. Amer. Statist. 46 140–145.
  • [32] Kneip, A. and Utikal, K. J. (2001). Inference for density families using functional principal component analysis. J. Amer. Statist. Assoc. 96 519–542.
  • [33] Li, Y. and Hsing, T. (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Ann. Statist. 38 3321–3351.
  • [34] Mallows, C. L. (1972). A note on asymptotic joint normality. Ann. Math. Statist. 43 508–515.
  • [35] Müller, H. G. and Stadtmüller, U. (1999). Multivariate boundary kernels and a continuous least squares principle. J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 439–458.
  • [36] Müller, H.-G. and Yao, F. (2008). Functional additive models. J. Amer. Statist. Assoc. 103 1534–1544.
  • [37] Parzen, E. (1979). Nonparametric statistical modeling. J. Amer. Statist. Assoc. 74 105–121.
  • [38] Petersen, A. and Müller, H.-G. (2015). Supplement to “Functional data analysis for density functions by transformation to a Hilbert space.” DOI:10.1214/15-AOS1363SUPP.
  • [39] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York.
  • [40] Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math. Statist. 23 470–472.
  • [41] Sheline, Y. I. and Raichle, M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 74 340–347.
  • [42] Srivastava, A., Jermyn, I. and Joshi, S. (2007). Riemannian analysis of probability density functions with applications in vision. Proceedings from IEEE Conference on Computer Vision and Pattern Recognition 25 1–8.
  • [43] Srivastava, A., Klassen, E., Joshi, S. H. and Jermyn, I. H. (2011a). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33 1415–1428.
  • [44] Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011b). Registration of functional data using Fisher–Rao metric. Available at arXiv:1103.3817v2 [math.ST].
  • [45] Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York.
  • [46] Tukey, J. W. (1965). Which part of the sample contains the information? Proc. Natl. Acad. Sci. USA 53 127–134.
  • [47] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI.
  • [48] Wand, M. P., Marron, J. S. and Ruppert, D. (1991). Transformations in density estimation. J. Amer. Statist. Assoc. 86 343–361.
  • [49] Worsley, K. J., Chen, J.-I., Lerch, J. and Evans, A. C. (2005). Comparing functional connectivity via thresholding correlations and singular value decomposition. Philosophical Transactions of the Royal Society B: Biological Sciences 360 913–920.
  • [50] Zhang, Z. and Müller, H.-G. (2011). Functional density synchronization. Comput. Statist. Data Anal. 55 2234–2249.

Supplemental materials

  • The Wasserstein metric, Wasserstein–Fréchet mean, simulation results and additional proofs. The supplementary material includes additional discussion on the Wasserstein distance and the rate of convergence of the Wasserstein–Fréchet mean is derived. Additional simulation results are presented for FVE values using the Wasserstein metric, similar to the boxplots in Figure 2, which correspond to FVE values using the $L^{2}$ metric. All assumptions are listed in one place. Lastly, additional proofs of auxiliary results are provided.