The Annals of Statistics

Adaptive testing on a regression function at a point

Timothy Armstrong

Full-text: Open access

Abstract

We consider the problem of inference on a regression function at a point when the entire function satisfies a sign or shape restriction under the null. We propose a test that achieves the optimal minimax rate adaptively over a range of Hölder classes, up to a $\log\log n$ term, which we show to be necessary for adaptation. We apply the results to adaptive one-sided tests for the regression discontinuity parameter under a monotonicity restriction, the value of a monotone regression function at the boundary and the proportion of true null hypotheses in a multiple testing problem.

Article information

Source
Ann. Statist., Volume 43, Number 5 (2015), 2086-2101.

Dates
Received: October 2014
Revised: February 2015
First available in Project Euclid: 3 August 2015

Permanent link to this document
https://projecteuclid.org/euclid.aos/1438606854

Digital Object Identifier
doi:10.1214/15-AOS1342

Mathematical Reviews number (MathSciNet)
MR3375877

Zentralblatt MATH identifier
1327.62276

Subjects
Primary: 62G10: Hypothesis testing 62G08: Nonparametric regression
Secondary: 62G20: Asymptotic properties

Keywords
Adaptive testing regression discontinuity identification at infinity

Citation

Armstrong, Timothy. Adaptive testing on a regression function at a point. Ann. Statist. 43 (2015), no. 5, 2086--2101. doi:10.1214/15-AOS1342. https://projecteuclid.org/euclid.aos/1438606854


Export citation

References

  • Andrews, D. W. K. and Schafgans, M. M. A. (1998). Semiparametric estimation of the intercept of a sample selection model. Rev. Econ. Stud. 65 497–517.
  • Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384–2398.
  • Cai, T. T., Jin, J. and Low, M. G. (2007). Estimation and confidence sets for sparse normal mixtures. Ann. Statist. 35 2421–2449.
  • Cai, T. T. and Low, M. G. (2004). An adaptation theory for nonparametric confidence intervals. Ann. Statist. 32 1805–1840.
  • Cai, T. T., Low, M. G. and Xia, Y. (2013). Adaptive confidence intervals for regression functions under shape constraints. Ann. Statist. 41 722–750.
  • Chamberlain, G. (1986). Asymptotic efficiency in semiparametric models with censoring. J. Econometrics 32 189–218.
  • Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 962–994.
  • Dümbgen, L. (2003). Optimal confidence bands for shape-restricted curves. Bernoulli 9 423–449.
  • Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124–152.
  • Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Institute of Mathematical Statistics (IMS) Monographs 1. Cambridge Univ. Press, Cambridge.
  • Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Amer. Statist. Assoc. 91 674–688.
  • Hahn, J., Todd, P. and Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 69 201–209.
  • Heckman, J. (1990). Varieties of selection Bias. The American Economic Review 80 313–318.
  • Imbens, G. W. and Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. J. Econometrics 142 615–635.
  • Ingster, Y. I. and Suslina, I. A. (2003). Nonparametric Goodness-of-Fit Testing Under Gaussian Models. Lecture Notes in Statistics 169. Springer, New York.
  • Khan, S. and Tamer, E. (2010). Irregular identification, support conditions, and inverse weight estimation. Econometrica 78 2021–2042.
  • Lepski, O. V. and Tsybakov, A. B. (2000). Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 17–48.
  • Low, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547–2554.
  • Meinshausen, N. and Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. Ann. Statist. 34 373–393.
  • Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399–2430.
  • Pouet, C. (1999). On testing nonparametric hypotheses for analytic regression functions in Gaussian noise. Math. Methods Statist. 8 536–549.
  • Shorack, G. R. and Wellner, J. A. (2009). Empirical Processes with Applications to Statistics. SIAM, Philadelphia, PA.
  • Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498.
  • Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 479–498.
  • Wellner, J. A. (1978). Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Wahrsch. Verw. Gebiete 45 73–88.