The Annals of Statistics

A characterization of strong orthogonal arrays of strength three

Yuanzhen He and Boxin Tang

Full-text: Open access

Abstract

In an early paper, He and Tang [Biometrika 100 (2013) 254–260] introduced and studied a new class of designs, strong orthogonal arrays, for computer experiments, and characterized such arrays through generalized orthogonal arrays. The current paper presents a simple characterization for strong orthogonal arrays of strength three. Besides being simple, this new characterization through a notion of semi-embeddability is more direct and penetrating in terms of revealing the structure of strong orthogonal arrays. Some other results on strong orthogonal arrays of strength three are also obtained along the way, and in particular, two $\operatorname{SOA}(54,5,27,3)$’s are constructed.

Article information

Source
Ann. Statist., Volume 42, Number 4 (2014), 1347-1360.

Dates
First available in Project Euclid: 25 June 2014

Permanent link to this document
https://projecteuclid.org/euclid.aos/1403715203

Digital Object Identifier
doi:10.1214/14-AOS1225

Mathematical Reviews number (MathSciNet)
MR3226159

Zentralblatt MATH identifier
1306.62188

Subjects
Primary: 62K15: Factorial designs
Secondary: 05B15: Orthogonal arrays, Latin squares, Room squares

Keywords
Computer experiment low dimensional projection Latin hypercube space-filling design $(t,m,s)$-net

Citation

He, Yuanzhen; Tang, Boxin. A characterization of strong orthogonal arrays of strength three. Ann. Statist. 42 (2014), no. 4, 1347--1360. doi:10.1214/14-AOS1225. https://projecteuclid.org/euclid.aos/1403715203


Export citation

References

  • Bierbrauer, J., Edel, Y. and Schmid, W. Ch. (2002). Coding-theoretic constructions for $(t,m,s)$-nets and ordered orthogonal arrays. J. Combin. Des. 10 403–418.
  • Bose, R. C. and Bush, K. A. (1952). Orthogonal arrays of strength two and three. Ann. Math. Stat. 23 508–524.
  • Cheng, C. S. (2014). Theory of Factorial Design. CRC Press, New York.
  • Dey, A. and Mukerjee, R. (1999). Fractional Factorial Plans. Wiley, New York.
  • Fang, K.-T., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments. Chapman & Hall, Boca Raton, FL.
  • Fang, K.-T. and Mukerjee, R. (2000). A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika 87 193–198.
  • Haaland, B. and Qian, P. Z. G. (2010). An approach to constructing nested space-filling designs for multi-fidelity computer experiments. Statist. Sinica 20 1063–1075.
  • He, Y. and Tang, B. (2013). Strong orthogonal arrays and associated Latin hypercubes for computer experiments. Biometrika 100 254–260.
  • Hedayat, A., Seiden, E. and Stufken, J. (1997). On the maximal number of factors and the enumeration of $3$-symbol orthogonal arrays of strength $3$ and index $2$. J. Statist. Plann. Inference 58 43–63.
  • Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York.
  • Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs. J. Statist. Plann. Inference 26 131–148.
  • Lawrence, K. M. (1996). A combinatorial characterization of $(t,m,s)$-nets in base $b$. J. Combin. Des. 4 275–293.
  • Lin, C. D., Mukerjee, R. and Tang, B. (2009). Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika 96 243–247.
  • McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 239–245.
  • Mullen, G. L. and Schmid, W. Ch. (1996). An equivalence between $(t,m,s)$-nets and strongly orthogonal hypercubes. J. Combin. Theory Ser. A 76 164–174.
  • Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods. In SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.
  • Niederreiter, H. (1987). Point sets and sequences with small discrepancy. Monatsh. Math. 104 273–337.
  • Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica 2 439–452.
  • Owen, A. B. (1995). Randomly permuted $(t,m,s)$-nets and $(t,s)$-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Las Vegas, NV, 1994). Lecture Notes in Statist. 106 299–317. Springer, New York.
  • Rao, C. R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays. Suppl. J. R. Stat. Soc. 9 128–139.
  • Roth, K. F. (1954). On irregularities of distribution. Mathematika 1 73–79.
  • Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and Analysis of Computer Experiments. Springer, New York.
  • Schoen, E. D. (2009). All orthogonal arrays with 18 runs. Qual. Reliab. Eng. Int. 25 467–480.
  • Sobol’, I. M. (1967). Distribution of points in a cube and approximate evaluation of integrals. Ž. Vyčisl. Mat. i Mat. Fiz. 7 784–802.
  • Tang, B. (1993). Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88 1392–1397.