The Annals of Statistics

A semiparametric spatial dynamic model

Yan Sun, Hongjia Yan, Wenyang Zhang, and Zudi Lu

Full-text: Open access

Abstract

Stimulated by the Boston house price data, in this paper, we propose a semiparametric spatial dynamic model, which extends the ordinary spatial autoregressive models to accommodate the effects of some covariates associated with the house price. A profile likelihood based estimation procedure is proposed. The asymptotic normality of the proposed estimators are derived. We also investigate how to identify the parametric/nonparametric components in the proposed semiparametric model. We show how many unknown parameters an unknown bivariate function amounts to, and propose an AIC/BIC of nonparametric version for model selection. Simulation studies are conducted to examine the performance of the proposed methods. The simulation results show our methods work very well. We finally apply the proposed methods to analyze the Boston house price data, which leads to some interesting findings.

Article information

Source
Ann. Statist., Volume 42, Number 2 (2014), 700-727.

Dates
First available in Project Euclid: 20 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.aos/1400592175

Digital Object Identifier
doi:10.1214/13-AOS1201

Mathematical Reviews number (MathSciNet)
MR3210984

Zentralblatt MATH identifier
1297.62093

Subjects
Primary: 62G08: Nonparametric regression
Secondary: 62G05: Estimation 62G20: Asymptotic properties

Keywords
AIC/BIC local linear modeling profile likelihood spatial interaction

Citation

Sun, Yan; Yan, Hongjia; Zhang, Wenyang; Lu, Zudi. A semiparametric spatial dynamic model. Ann. Statist. 42 (2014), no. 2, 700--727. doi:10.1214/13-AOS1201. https://projecteuclid.org/euclid.aos/1400592175


Export citation

References

  • [1] Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic, Dordrecht.
  • [2] Cheng, M.-Y., Zhang, W. and Chen, L.-H. (2009). Statistical estimation in generalized multiparameter likelihood models. J. Amer. Statist. Assoc. 104 1179–1191.
  • [3] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman & Hall, London.
  • [4] Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficient models. Ann. Statist. 27 1491–1518.
  • [5] Fan, J. and Zhang, W. (2000). Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand. J. Stat. 27 715–731.
  • [6] Gao, J., Lu, Z. and Tjøstheim, D. (2006). Estimation in semiparametric spatial regression. Ann. Statist. 34 1395–1435.
  • [7] Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory 24 726–748.
  • [8] Kelejian, H. H. and Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Econometrics 157 53–67.
  • [9] Lee, L.-F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72 1899–1925.
  • [10] Li, J. and Zhang, W. (2011). A semiparametric threshold model for censored longitudinal data analysis. J. Amer. Statist. Assoc. 106 685–696.
  • [11] Linton, O. (1995). Second order approximation in the partially linear regression model. Econometrica 63 1079–1112.
  • [12] Ord, K. (1975). Estimation methods for models of spatial interaction. J. Amer. Statist. Assoc. 70 120–126.
  • [13] Su, L. and Jin, S. (2010). Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models. J. Econometrics 157 18–33.
  • [14] Sun, Y., Yan, H., Zhang, W. and Lu, Z. (2014). Supplement to “A semiparametric spatial dynamic model.” DOI:10.1214/13-AOS1201SUPP.
  • [15] Sun, Y., Zhang, W. and Tong, H. (2007). Estimation of the covariance matrix of random effects in longitudinal studies. Ann. Statist. 35 2795–2814.
  • [16] Tao, H. and Xia, Y. (2012). Adaptive semi-varying coefficient model selection. Statist. Sinica 22 575–599.
  • [17] Wang, H. and Xia, Y. (2009). Shrinkage estimation of the varying coefficient model. J. Amer. Statist. Assoc. 104 747–757.
  • [18] White, H. (1994). Estimation, Inference and Specification Analysis. Cambridge Univ. Press, Cambridge.
  • [19] Zhang, W., Fan, J. and Sun, Y. (2009). A semiparametric model for cluster data. Ann. Statist. 37 2377–2408.
  • [20] Zhang, W., Lee, S.-Y. and Song, X. (2002). Local polynomial fitting in semivarying coefficient model. J. Multivariate Anal. 82 166–188.

Supplemental materials