The Annals of Statistics

Quantum local asymptotic normality based on a new quantum likelihood ratio

Koichi Yamagata, Akio Fujiwara, and Richard D. Gill

Full-text: Open access

Abstract

We develop a theory of local asymptotic normality in the quantum domain based on a novel quantum analogue of the log-likelihood ratio. This formulation is applicable to any quantum statistical model satisfying a mild smoothness condition. As an application, we prove the asymptotic achievability of the Holevo bound for the local shift parameter.

Article information

Source
Ann. Statist., Volume 41, Number 4 (2013), 2197-2217.

Dates
First available in Project Euclid: 23 October 2013

Permanent link to this document
https://projecteuclid.org/euclid.aos/1382547518

Digital Object Identifier
doi:10.1214/13-AOS1147

Mathematical Reviews number (MathSciNet)
MR3127863

Zentralblatt MATH identifier
1278.81050

Subjects
Primary: 81P50: Quantum state estimation, approximate cloning
Secondary: 62F12: Asymptotic properties of estimators

Keywords
Quantum local asymptotic normality Holevo bound quantum log-likelihood ratio

Citation

Yamagata, Koichi; Fujiwara, Akio; Gill, Richard D. Quantum local asymptotic normality based on a new quantum likelihood ratio. Ann. Statist. 41 (2013), no. 4, 2197--2217. doi:10.1214/13-AOS1147. https://projecteuclid.org/euclid.aos/1382547518


Export citation

References

  • [1] Amari, S.-i. and Nagaoka, H. (2000). Methods of Information Geometry. Translations of Mathematical Monographs 191. Amer. Math. Soc., Providence, RI.
  • [2] Fujiwara, A. and Nagaoka, H. (1995). Quantum Fisher metric and estimation for pure state models. Phys. Lett. A 201 119–124.
  • [3] Fujiwara, A. and Nagaoka, H. (1999). An estimation theoretical characterization of coherent states. J. Math. Phys. 40 4227–4239.
  • [4] Gill, R. D. and Guţă, M. (2012). On asymptotic quantum statistical inference. IMS Collections From Probability to Statistics and Back: High-Dimensional Models and Processes 9 105–127.
  • [5] Gill, R. D. and Levit, B. Y. (1995). Applications of the Van Trees inequality: A Bayesian Cramér–Rao bound. Bernoulli 1 59–79.
  • [6] Gill, R. D. and Massar, S. (2000). State estimation for large ensembles. Phys. Rev. A (3) 61 042312.
  • [7] Guţă, M. and Butucea, C. (2010). Quantum $U$-statistics. J. Math. Phys. 51 102202, 24.
  • [8] Guţă, M. and Jenčová, A. (2007). Local asymptotic normality in quantum statistics. Comm. Math. Phys. 276 341–379.
  • [9] Guţă, M. and Kahn, J. (2006). Local asymptotic normality for qubit states. Phys. Rev. A (3) 73 052108, 15.
  • [10] Hayashi, M. (1997). A linear programming approach to attainable Cramér–Rao type bounds. In Quantum Communication, Computing, and Measurement 99–108. Plenum, New York.
  • [11] Hayashi, M. and Matsumoto, K. (2008). Asymptotic performance of optimal state estimation in qubit system. J. Math. Phys. 49 102101, 33.
  • [12] Holevo, A. (2011). Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed. Quaderni. Monographs 1. Edizioni della Normale, Pisa.
  • [13] Jakšić, V., Pautrat, Y. and Pillet, C. A. (2010). A quantum central limit theorem for sums of independent identically distributed random variables. J. Math. Phys. 51 015208, 8.
  • [14] Kahn, J. and Guţă, M. (2009). Local asymptotic normality for finite dimensional quantum systems. Comm. Math. Phys. 289 597–652.
  • [15] Kubo, F. and Ando, T. (1979/80). Means of positive linear operators. Math. Ann. 246 205–224.
  • [16] Manuceau, J., Sirugue, M., Testard, D. and Verbeure, A. (1973). The smallest $C^{\ast}$-algebra for canonical commutations relations. Comm. Math. Phys. 32 231–243.
  • [17] Matsumoto, K. (2002). A new approach to the Cramér–Rao-type bound of the pure-state model. J. Phys. A 35 3111–3123.
  • [18] Nagaoka, H. (1991). A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to quantum estimation theory (in Japanese). Transactions of the Japan Society for Industrial and Applied Mathematics 1 305–318.
  • [19] Petz, D. (1990). An Invitation to the Algebra of Canonical Commutation Relations. Leuven Notes in Mathematical and Theoretical Physics. Series A: Mathematical Physics 2. Leuven Univ. Press, Leuven.
  • [20] Petz, D. (2008). Quantum Information Theory and Quantum Statistics. Springer, Berlin.
  • [21] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge.
  • [22] Yamagata, K. (2011). Efficiency of quantum state tomography for qubits. Int. J. Quantum Inf. 9 1167–1183.
  • [23] Yamagata, K., Fujiwara, A. and Gill, R. D. (2013). Supplement to “Quantum local asymptotic normality based on a new quantum likelihood ratio.” DOI:10.1214/13-AOS1147SUPP.

Supplemental materials

  • Supplementary material: Supplementary material to “Quantum local asymptotic normality based on a new quantum likelihood ratio”. Section A is devoted to proofs of Lemma 2.6, Theorems 2.9 and 2.10, Corollary 2.11, and Theorem 3.1. Section B is devoted to a brief account of quantum estimation theory, including quantum logarithmic derivatives, the commutation operator, the Holevo bound, estimation theory for quantum Gaussian shift models and for pure state models.