The Annals of Statistics

Robust $T$-optimal discriminating designs

Holger Dette, Viatcheslav B. Melas, and Petr Shpilev

Full-text: Open access

Abstract

This paper considers the problem of constructing optimal discriminating experimental designs for competing regression models on the basis of the $T$-optimality criterion introduced by Atkinson and Fedorov [Biometrika 62 (1975a) 57–70]. $T$-optimal designs depend on unknown model parameters and it is demonstrated that these designs are sensitive with respect to misspecification. As a solution to this problem we propose a Bayesian and standardized maximin approach to construct robust and efficient discriminating designs on the basis of the $T$-optimality criterion. It is shown that the corresponding Bayesian and standardized maximin optimality criteria are closely related to linear optimality criteria. For the problem of discriminating between two polynomial regression models which differ in the degree by two the robust $T$-optimal discriminating designs can be found explicitly. The results are illustrated in several examples.

Article information

Source
Ann. Statist., Volume 41, Number 4 (2013), 1693-1715.

Dates
First available in Project Euclid: 5 September 2013

Permanent link to this document
https://projecteuclid.org/euclid.aos/1378386236

Digital Object Identifier
doi:10.1214/13-AOS1117

Mathematical Reviews number (MathSciNet)
MR3127846

Zentralblatt MATH identifier
1277.62188

Subjects
Primary: 62K05: Optimal designs

Keywords
Optimal design model discrimination robust design linear optimality criteria Chebyshev polynomial

Citation

Dette, Holger; Melas, Viatcheslav B.; Shpilev, Petr. Robust $T$-optimal discriminating designs. Ann. Statist. 41 (2013), no. 4, 1693--1715. doi:10.1214/13-AOS1117. https://projecteuclid.org/euclid.aos/1378386236


Export citation

References

  • Asprey, S. P. and Macchietto, S. (2000). Statistical tools for optimal dynamic model building. Computers and Chemical Engineering 24 1261–1267.
  • Atkinson, A. C. (2010). The non-uniqueness of some designs for discriminating between two polynomial models in one variable. In MODA 9, Advances in Model-Oriented Design and Analysis 9–16. Springer, Heidelberg.
  • Atkinson, A. C., Bogacka, B. and Bogacki, M. B. (1998). $D$- and $T$-optimum designs for the kinetics of a reversible chemical reaction. Chemometrics and Intelligent Laboratory Systems 43 185–198.
  • Atkinson, A. C. and Fedorov, V. V. (1975a). The design of experiments for discriminating between two rival models. Biometrika 62 57–70.
  • Atkinson, A. C. and Fedorov, V. V. (1975b). Optimal design: Experiments for discriminating between several models. Biometrika 62 289–303.
  • Bretz, F., Pinheiro, J. C. and Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics 61 738–748.
  • Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 273–304.
  • Chernoff, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist. 24 586–602.
  • Cornish-Bowden, A. (1965). Fundamentals of Enzyme Kinetics, rev. ed. Portland Press, London.
  • Danesi, R., Innocenti, F., Fogli, S., Gennari, A., Baldini, E., Di Paolo, A., Salvadori, B., Bocci, G., Conte, P. F. and Del Tacca, M. (2002). Pharmacokinetics and pharmacodynamics of combination chemotherapy with paclitaxel and epirubicin in breast cancer patients. Br. J. Clin. Pharmacol. 53 508–518.
  • Dette, H. (1994). Discrimination designs for polynomial regression on compact intervals. Ann. Statist. 22 890–903.
  • Dette, H. (1995). Optimal designs for identifying the degree of a polynomial regression. Ann. Statist. 23 1248–1266.
  • Dette, H. (1997). Designing experiments with respect to “standardized” optimality criteria. J. R. Stat. Soc. Ser. B Stat. Methodol. 59 97–110.
  • Dette, H., Haines, L. M. and Imhof, L. A. (2007). Maximin and Bayesian optimal designs for regression models. Statist. Sinica 17 463–480.
  • Dette, H. and Haller, G. (1998). Optimal designs for the identification of the order of a Fourier regression. Ann. Statist. 26 1496–1521.
  • Dette, H., Melas, V. B. and Wong, W. K. (2005). Optimal design for goodness-of-fit of the Michaelis–Menten enzyme kinetic function. J. Amer. Statist. Assoc. 100 1370–1381.
  • Dette, H., Melas, V. B. and Shpilev, P. (2012). $T$-optimal designs for discrimination between two polynomial models. Ann. Statist. 40 188–205.
  • Dette, H. and Studden, W. J. (1997). The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. Wiley, New York.
  • Dette, H. and Titoff, S. (2009). Optimal discrimination designs. Ann. Statist. 37 2056–2082.
  • Foo, L. K. and Duffull, S. (2011). Optimal design of pharmacokinetic-pharmacodynamic studies. In Pharmacokinetics in Drug Development, Advances and Applications. Springer, New York.
  • Gaffke, N. (1987). Further characterizations of design optimality and admissibility for partial parameter estimation in linear regression. Ann. Statist. 15 942–957.
  • Hill, P. D. (1978). A review of experimental design procedures for regression model discrimination. Technometrics 20 15–21.
  • Hunter, W. G. and Reiner, A. M. (1965). Designs for discriminating between two rival models. Technometrics 7 307–323.
  • Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics XV. Wiley, New York.
  • Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849–879.
  • Müller, C. H. and Pázman, A. (1998). Applications of necessary and sufficient conditions for maximin efficient designs. Metrika 48 1–19.
  • Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory. MIT Press, Cambridge, MA.
  • Ponce de Leon, A. C. and Atkinson, A. C. (1991). Optimum experimental design for discriminating between two rival models in the presence of prior information. Biometrika 78 601–608.
  • Pukelsheim, F. and Rieder, S. (1992). Efficient rounding of approximate designs. Biometrika 79 763–770.
  • Song, D. and Wong, W. K. (1999). On the construction of $G_{rm}$-optimal designs. Statist. Sinica 9 263–272.
  • Spruill, M. C. (1990). Good designs for testing the degree of a polynomial mean. Sankhyā Ser. B 52 67–74.
  • Stigler, S. (1971). Optimal experimental design for polynomial regression. J. Amer. Statist. Assoc. 66 311–318.
  • Studden, W. J. (1982). Some robust-type $D$-optimal designs in polynomial regression. J. Amer. Statist. Assoc. 77 916–921.
  • Studden, W. J. (1989). Note on some $\phi_{p}$-optimal designs for polynomial regression. Ann. Statist. 17 618–623.
  • Szegö, G. (1959). Orthogonal Polynomials, rev. ed. American Mathematical Society Colloquium Publications 23. Amer. Math. Soc., Providence, RI.
  • Tommasi, C. and López-Fidalgo, J. (2010). Bayesian optimum designs for discriminating between models with any distribution. Comput. Statist. Data Anal. 54 143–150.
  • Uciński, D. and Bogacka, B. (2005). $T$-optimum designs for discrimination between two multiresponse dynamic models. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 3–18.
  • Waterhouse, T. H., Woods, D. C., Eccleston, J. A. and Lewis, S. M. (2008). Design selection criteria for discrimination/estimation for nested models and a binomial response. J. Statist. Plann. Inference 138 132–144.
  • Wiens, D. P. (2009). Robust discrimination designs. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 805–829.
  • Wiens, D. P. (2010). Robustness of design for the testing of lack of fit and for estimation in binary response models. Comput. Statist. Data Anal. 54 3371–3378.