The Annals of Statistics

Maximum lilkelihood estimation in the $\beta$-model

Alessandro Rinaldo, Sonja Petrović, and Stephen E. Fienberg

Full-text: Open access

Abstract

We study maximum likelihood estimation for the statistical model for undirected random graphs, known as the $\beta$-model, in which the degree sequences are minimal sufficient statistics. We derive necessary and sufficient conditions, based on the polytope of degree sequences, for the existence of the maximum likelihood estimator (MLE) of the model parameters. We characterize in a combinatorial fashion sample points leading to a nonexistent MLE, and nonestimability of the probability parameters under a nonexistent MLE. We formulate conditions that guarantee that the MLE exists with probability tending to one as the number of nodes increases.

Article information

Source
Ann. Statist., Volume 41, Number 3 (2013), 1085-1110.

Dates
First available in Project Euclid: 13 June 2013

Permanent link to this document
https://projecteuclid.org/euclid.aos/1371150894

Digital Object Identifier
doi:10.1214/12-AOS1078

Mathematical Reviews number (MathSciNet)
MR3113804

Zentralblatt MATH identifier
1292.62052

Subjects
Primary: 62F99: None of the above, but in this section

Keywords
$\beta$-model polytope of degree sequences random graphs maximum likelihood estimator

Citation

Rinaldo, Alessandro; Petrović, Sonja; Fienberg, Stephen E. Maximum lilkelihood estimation in the $\beta$-model. Ann. Statist. 41 (2013), no. 3, 1085--1110. doi:10.1214/12-AOS1078. https://projecteuclid.org/euclid.aos/1371150894


Export citation

References

  • Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47–97.
  • Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, Chichester.
  • Barvinok, A. and Hartigan, J. A. (2010). The number of graphs and a random graph with a given degree sequence. Available at http://arxiv.org/pdf/1003.0356v2.
  • Blitzstein, J. and Diaconis, P. (2010). A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math. 6 489–522.
  • Brown, L. (1986). Fundamentals of Statistical Exponential Families. Institute of Mathematical Statistics Lecture Notes—Monograph Series 9. IMS, Hayward, CA.
  • Chatterjee, S., Diaconis, P. and Sly, A. (2011). Random graphs with a given degree sequence. Ann. Appl. Probab. 21 1400–1435.
  • Cohen, R. and Havlin, S. (2010). Complex Networks: Structure, Robustness and Function. Cambridge Univ. Press, Cambridge.
  • Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley, New York.
  • Diaconis, P. and Janson, S. (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7) 28 33–61.
  • Erdős, P. and Rényi, A. (1959). On random graphs. I. Publ. Math. Debrecen 6 290–297.
  • Fienberg, S. E. and Rinaldo, A. (2012). Maximum likelihood estimation in log-linear models. Ann. Statist. 40 996–1023.
  • Fienberg, S. E., Meyer, M. M. and Wasserman, S. S. (1985). Statistical analysis of multiple sociometric relations. J. Amer. Statist. Assoc. 80 51–67.
  • Fienberg, S. E. and Wasserman, S. S. (1981a). Categorical data analysis of single sociometric relations. Sociological Methodology 1981 156–192.
  • Fienberg, S. E. and Wasserman, S. S. (1981b). An exponential family of probability distributions for directed graphs: Comment. J. Amer. Statist. Assoc. 76 54–57.
  • Foster, J. G., Foster, D. V., Grassberger, P. and Paczuski, M. (2007). Link and subgraph likelihoods in random undirected networks with fixed and partially fixed degree sequences. Phys. Rev. E (3) 76 046112, 12.
  • Fukuda, K. (2004). From the zonotope construction to the Minkowski addition of convex polytopes. J. Symbolic Comput. 38 1261–1272.
  • Gawrilow, E. and Joswig, M. (2000). polymake: A framework for analyzing convex polytopes. In Polytopes—Combinatorics and Computation (Oberwolfach, 1997) (G. Kalai and G. M. Ziegler, eds.). DMV Seminar 29 43–73. Birkhäuser, Basel.
  • Geiger, D., Meek, C. and Sturmfels, B. (2006). On the toric algebra of graphical models. Ann. Statist. 34 1463–1492.
  • Geyer, C. J. (2009). Likelihood inference in exponential families and directions of recession. Electron. J. Stat. 3 259–289.
  • Goldenberg, A., Zheng, A. X., Fienberg, S. E. and Airoldi, E. M. (2010). A survey of statistical network models. Foundations and Trends in Machine Learning 2 129–233.
  • Goodreau, S. M. (2007). Advances in exponential random graph (p∗) models applied to a large social network. Social Networks 29 231–248.
  • Haberman, S. (1981). Discussion of “An exponential family of probability distributions for directed graphs,” by P. W. Holland and S. Leinhardt. J. Amer. Statist. Assoc. 76 60–61.
  • Handcock, M. S. and Morris, M. (2007). A simple model for complex networks with arbitrary degree distribution and clustering. In Statistical Network Analysis: Models, Issues and New Directions (E. Airoldi, D. Blei, S. E. Fienberg, A. Goldenberg, E. Xing and A. Zheng, eds.). Lecture Notes in Computer Science 4503 103–114. Springer, Berlin.
  • Hara, H. and Takemura, A. (2010). Connecting tables with zero-one entries by a subset of a Markov basis. In Algebraic Methods in Statistics and Probability II (M. Viana and H. Wynn, eds.). Contemporary Mathematics 516 199–213. Amer. Math. Soc., Providence, RI.
  • Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. J. Amer. Statist. Assoc. 76 33–50.
  • Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer, New York.
  • Lauritzen, S. L. (2003). Rasch models with exchangeable rows and columns. In Bayesian Statistics, 7 (Tenerife, 2002) (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 215–232. Oxford Univ. Press, New York.
  • Lauritzen, S. L. (2008). Exchangeable Rasch matrices. Rend. Mat. Appl. (7) 28 83–95.
  • Lovász, L. and Szegedy, B. (2006). Limits of dense graph sequences. J. Combin. Theory Ser. B 96 933–957.
  • Mahadev, N. V. R. and Peled, U. N. (1995). Threshold Graphs and Related Topics. Annals of Discrete Mathematics 56. North-Holland, Amsterdam.
  • Meyer, M. M. (1982). Transforming contingency tables. Ann. Statist. 10 1172–1181.
  • Morton, J. (2013). Relations among conditional probabilities. J. Symbolic Comput. 50 478–492.
  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45 167–256 (electronic).
  • Newman, M. E. J. (2010). Networks: An Introduction. Oxford Univ. Press, Oxford.
  • Newman, M., Barabási, A.-L. andWatts, D. J., eds. (2006). The Structure and Dynamics of Networks. Princeton Univ. Press, Princeton, NJ.
  • Newman, M. E. J., Strogatz, S. H. and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E (3) 64 026118, 17.
  • Ogawa, M., Hara, H. and Takemura, A. (2013). Graver basis for an undirected graph and its application to testing the beta model of random graphs. Ann. Inst. Statist. Math. 65 191–212.
  • Park, J. and Newman, M. E. J. (2004). Statistical mechanics of networks. Phys. Rev. E (3) 70 066117, 13.
  • Perry, P. O. and Wolfe, P. J. (2012). Null models for network data. Available at http://arxiv.org/abs/1201.5871.
  • Petrović, S., Rinaldo, A. and Fienberg, S. E. (2010). Algebraic statistics for a directed random graph model with reciprocation. In Algebraic Methods in Statistics and Probability II. Contemporary Mathematics 516 261–283. Amer. Math. Soc., Providence, RI.
  • Rinaldo, A., Fienberg, S. E. and Zhou, Y. (2009). On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Stat. 3 446–484.
  • Rinaldo, A., Petrović, S. and Fienberg, S. E. (2013). Supplement to “Maximum lilkelihood estimation in the $\beta$-model.” DOI:10.1214/12-AOS1078SUPP.
  • Robins, D., Pattison, P., Kalish, Y. and Lusher, D. (2007). An introduction to exponential random graph ($p^{\ast}$) models for social networks. Social Networks 29 173–191.
  • Schrijver, A. (1998). Theory of Linear and Integer Programming. Wiley, New York.
  • Stanley, R. P. (1991). A zonotope associated with graphical degree sequences. In Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 4 555–570. Amer. Math. Soc., Providence, RI.
  • Viger, F. and Latapy, M. (2005). Efficient and simple generation of random simple connected graphs with prescribed degree sequence. In Computing and Combinatorics. Lecture Notes in Computer Science 3595 440–449. Springer, Berlin.
  • Weibel, C. (2010). Implementation and parallelization of a reverse-search algorithm for Minkowski sums. In Proceedings of the 12th Workshop on Algorithm Engineering and Experiments (ALENEX 2010) 34–42. SIAM, Philadelphia. Available at https://sites.google.com/site/christopheweibel/research/minksum.
  • Willinger, W., Alderson, D. and Doyle, J. C. (2009). Mathematics and the Internet: A source of enormous confusion and great potential. Notices Amer. Math. Soc. 56 586–599.
  • Yan, T. and Xu, J. (2012). A central limit theorem in the $\beta$-model for undirected random graphs with a diverging number of vertices. Available at http://arxiv.org/abs/1202.3307.
  • Yan, T., Xu, J. and Yang, Y. (2012). High dimensional Wilks phenomena in random graph models. Available at http://arxiv.org/abs/1201.0058.

Supplemental materials

  • Supplementary material: Supplement to “Maximum lilkelihood estimation in the $\beta$-model”. In the supplementary material we extend our analysis to other models for network data: the Rasch model, the $\beta$-model with no sampling constraints on the number of observed edges per dyad, the Bradley–Terry model and the $p_{1}$ model of Holland and Leinhardt (1981). We also provide details on how to determine whether a given degree sequence belongs to the interior of the polytope of degree sequences $P_{n}$ and on how to compute the facial set corresponding to a degree sequence on the boundary of $P_{n}$.