The Annals of Statistics

Asymptotic theory with hierarchical autocorrelation: Ornstein–Uhlenbeck tree models

Lam Si Tung Ho and Cécile Ané

Full-text: Open access

Abstract

Hierarchical autocorrelation in the error term of linear models arises when sampling units are related to each other according to a tree. The residual covariance is parametrized using the tree-distance between sampling units. When observations are modeled using an Ornstein–Uhlenbeck (OU) process along the tree, the autocorrelation between two tips decreases exponentially with their tree distance. These models are most often applied in evolutionary biology, when tips represent biological species and the OU process parameters represent the strength and direction of natural selection. For these models, we show that the mean is not microergodic: no estimator can ever be consistent for this parameter and provide a lower bound for the variance of its MLE. For covariance parameters, we give a general sufficient condition ensuring microergodicity. This condition suggests that some parameters may not be estimated at the same rate as others. We show that, indeed, maximum likelihood estimators of the autocorrelation parameter converge at a slower rate than that of generally microergodic parameters. We showed this theoretically in a symmetric tree asymptotic framework and through simulations on a large real tree comprising 4507 mammal species.

Article information

Source
Ann. Statist., Volume 41, Number 2 (2013), 957-981.

Dates
First available in Project Euclid: 29 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.aos/1369836966

Digital Object Identifier
doi:10.1214/13-AOS1105

Mathematical Reviews number (MathSciNet)
MR3099127

Zentralblatt MATH identifier
1267.62092

Subjects
Primary: 62F12: Asymptotic properties of estimators 62M10: Time series, auto-correlation, regression, etc. [See also 91B84]
Secondary: 62M30: Spatial processes 92D15: Problems related to evolution 92B10: Taxonomy, cladistics, statistics

Keywords
Tree autocorrelation dependence microergodic Ornstein–Uhlenbeck evolution phylogenetics

Citation

Ho, Lam Si Tung; Ané, Cécile. Asymptotic theory with hierarchical autocorrelation: Ornstein–Uhlenbeck tree models. Ann. Statist. 41 (2013), no. 2, 957--981. doi:10.1214/13-AOS1105. https://projecteuclid.org/euclid.aos/1369836966


Export citation

References

  • Aldous, D. J. (2001). Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Statist. Sci. 16 23–34.
  • Anderes, E. (2010). On the consistent separation of scale and variance for Gaussian random fields. Ann. Statist. 38 870–893.
  • Ané, C. (2008). Analysis of comparative data with hierarchical autocorrelation. Ann. Appl. Stat. 2 1078–1102.
  • Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L. and Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446 507–512.
  • Butler, M. A. and King, A. A. (2004). Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164 683–695.
  • Cooper, N. and Purvis, A. (2010). Body size evolution in mammals: Complexity in tempo and mode. Am. Nat. 175 727–738.
  • Cressie, N. and Lahiri, S. N. (1993). The asymptotic distribution of REML estimators. J. Multivariate Anal. 45 217–233.
  • Cressie, N. and Lahiri, S. N. (1996). Asymptotics for REML estimation of spatial covariance parameters. J. Statist. Plann. Inference 50 327–341.
  • Cressie, N., Frey, J., Harch, B. and Smith, M. (2006). Spatial prediction on a river network. J. Agric. Biol. Environ. Stat. 11 127–150.
  • Hansen, T. F. and Martins, E. P. (1996). Translating between microevolutionary process and macroevolutionary patterns: The correlation structure of interspecific data. Evolution 50 1404–1417.
  • Hansen, T. F., Pienaar, J. and Orzack, S. H. (2008). A comparative method for studying adaptation to a randomly evolving environment. Evolution 62 1965–1977.
  • Hershey, J. R. and Olsen, P. A. (2007). Approximating the Kullback–Leibler divergence between Gaussian mixture models. In IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007 4 IV-317–IV-320. IEEE, Washington, DC.
  • Huang, H.-C., Cressie, N. and Gabrosek, J. (2002). Fast, resolution-consistent spatial prediction of global processes from satellite data. J. Comput. Graph. Statist. 11 63–88.
  • Ibragimov, I. A. and Rozanov, Y. A. (1978). Gaussian Random Processes. Applications of Mathematics 9. Springer, New York.
  • Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes 24. North-Holland, Amsterdam.
  • Ives, A. R., Midford, P. E. and Garland, T. Jr. (2007). Within-species variation and measurement error in phylogenetic comparative methods. Systematic Biology 56 252–270.
  • Kingman, J. F. C. (1982a). The coalescent. Stochastic Process. Appl. 13 235–248.
  • Kingman, J. F. C. (1982b). On the genealogy of large populations. J. Appl. Probab. 19A 27–43.
  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution 33 402–416.
  • Lavin, S. R., Karasov, W. H., Ives, A. R., Middleton, K. M. and Garland, T. Jr. (2008). Morphometrics of the avian small intestine compared with that of nonflying mammals: A phylogenetic approach. Physiological and Biochemical Zoology 81 526–550.
  • Mardia, K. V. and Marshall, R. J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71 135–146.
  • Monteiro, L. R. and Nogueira, M. R. (2011). Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evol. Biol. 11 137.
  • Radhakrishna Rao, C. and Varadarajan, V. S. (1963). Discrimination of Gaussian processes. Sankhyā Ser. A 25 303–330.
  • Shao, J. (1999). Mathematical Statistics. Sringer, New York.
  • Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.
  • Sweeting, T. J. (1980). Uniform asymptotic normality of the maximum likelihood estimator. Ann. Statist. 8 1375–1381.
  • Ver Hoef, J. M., Peterson, E. and Theobald, D. (2006). Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 13 449–464.
  • Ver Hoef, J. M. and Peterson, E. E. (2010). A moving average approach for spatial statistical models of stream networks. J. Amer. Statist. Assoc. 105 6–18.
  • Ying, Z. (1991). Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process. J. Multivariate Anal. 36 280–296.
  • Yule, G. U. (1925). A Mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B 213 21–87.
  • Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Amer. Statist. Assoc. 99 250–261.
  • Zhang, H. and Zimmerman, D. L. (2005). Towards reconciling two asymptotic frameworks in spatial statistics. Biometrika 92 921–936.