Annals of Statistics
- Ann. Statist.
- Volume 41, Number 1 (2013), 250-268.
Efficient estimation in sufficient dimension reduction
Yanyuan Ma and Liping Zhu
Abstract
We develop an efficient estimation procedure for identifying and estimating the central subspace. Using a new way of parameterization, we convert the problem of identifying the central subspace to the problem of estimating a finite dimensional parameter in a semiparametric model. This conversion allows us to derive an efficient estimator which reaches the optimal semiparametric efficiency bound. The resulting efficient estimator can exhaustively estimate the central subspace without imposing any distributional assumptions. Our proposed efficient estimation also provides a possibility for making inference of parameters that uniquely identify the central subspace. We conduct simulation studies and a real data analysis to demonstrate the finite sample performance in comparison with several existing methods.
Article information
Source
Ann. Statist., Volume 41, Number 1 (2013), 250-268.
Dates
First available in Project Euclid: 26 March 2013
Permanent link to this document
https://projecteuclid.org/euclid.aos/1364302742
Digital Object Identifier
doi:10.1214/12-AOS1072
Mathematical Reviews number (MathSciNet)
MR3059417
Zentralblatt MATH identifier
1347.62089
Subjects
Primary: 62H12: Estimation 62J02: General nonlinear regression
Secondary: 62F12: Asymptotic properties of estimators
Keywords
Central subspace dimension reduction estimating equations semiparametric efficiency sliced inverse regression
Citation
Ma, Yanyuan; Zhu, Liping. Efficient estimation in sufficient dimension reduction. Ann. Statist. 41 (2013), no. 1, 250--268. doi:10.1214/12-AOS1072. https://projecteuclid.org/euclid.aos/1364302742
Supplemental materials
- Supplementary material: Supplement to “Efficient estimation in sufficient dimension reduction”. The supplement file aos1072_supp.pdf is available upon request. It contains derivations of the efficient score for model (2.1) and an outline of proof for Theorems 1 and 2.Digital Object Identifier: doi:10.1214/12-AOS1072SUPP

