Annals of Statistics

Efficient estimation in sufficient dimension reduction

Yanyuan Ma and Liping Zhu

Full-text: Open access

Abstract

We develop an efficient estimation procedure for identifying and estimating the central subspace. Using a new way of parameterization, we convert the problem of identifying the central subspace to the problem of estimating a finite dimensional parameter in a semiparametric model. This conversion allows us to derive an efficient estimator which reaches the optimal semiparametric efficiency bound. The resulting efficient estimator can exhaustively estimate the central subspace without imposing any distributional assumptions. Our proposed efficient estimation also provides a possibility for making inference of parameters that uniquely identify the central subspace. We conduct simulation studies and a real data analysis to demonstrate the finite sample performance in comparison with several existing methods.

Article information

Source
Ann. Statist., Volume 41, Number 1 (2013), 250-268.

Dates
First available in Project Euclid: 26 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.aos/1364302742

Digital Object Identifier
doi:10.1214/12-AOS1072

Mathematical Reviews number (MathSciNet)
MR3059417

Zentralblatt MATH identifier
1347.62089

Subjects
Primary: 62H12: Estimation 62J02: General nonlinear regression
Secondary: 62F12: Asymptotic properties of estimators

Keywords
Central subspace dimension reduction estimating equations semiparametric efficiency sliced inverse regression

Citation

Ma, Yanyuan; Zhu, Liping. Efficient estimation in sufficient dimension reduction. Ann. Statist. 41 (2013), no. 1, 250--268. doi:10.1214/12-AOS1072. https://projecteuclid.org/euclid.aos/1364302742


Export citation

References

  • [1] Albright, S. C., Winston, W. L. and Zappe, C. J. (1999). Data Analysis and Decision Making with Microsoft Excel. Duxbury, Pacific Grove, CA.
  • [2] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore, MD.
  • [3] Chiaromonte, F., Cook, R. D. and Li, B. (2002). Sufficient dimension reduction in regressions with categorical predictors. Ann. Statist. 30 475–497.
  • [4] Cook, R. D. (1994). On the interpretation of regression plots. J. Amer. Statist. Assoc. 89 177–189.
  • [5] Cook, R. D. (1998). Regression Graphics. Wiley, New York.
  • [6] Cook, R. D. and Weisberg, S. (1991). Comment on “Sliced inverse regression for dimension reduction,” by K.-C. Li. J. Amer. Statist. Assoc. 86 328–332.
  • [7] Dong, Y. and Li, B. (2010). Dimension reduction for non-elliptically distributed predictors: Second-order methods. Biometrika 97 279–294.
  • [8] Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83 189–206.
  • [9] Li, B. and Dong, Y. (2009). Dimension reduction for nonelliptically distributed predictors. Ann. Statist. 37 1272–1298.
  • [10] Li, B. and Wang, S. (2007). On directional regression for dimension reduction. J. Amer. Statist. Assoc. 102 997–1008.
  • [11] Li, B., Zha, H. and Chiaromonte, F. (2005). Contour regression: A general approach to dimension reduction. Ann. Statist. 33 1580–1616.
  • [12] Li, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 316–342.
  • [13] Li, K.-C. and Duan, N. (1989). Regression analysis under link violation. Ann. Statist. 17 1009–1052.
  • [14] Li, L., Li, B. and Zhu, L.-X. (2010). Groupwise dimension reduction. J. Amer. Statist. Assoc. 105 1188–1201.
  • [15] Ma, Y. and Carroll, R. J. (2006). Locally efficient estimators for semiparametric models with measurement error. J. Amer. Statist. Assoc. 101 1465–1474.
  • [16] Ma, Y., Chiou, J.-M. and Wang, N. (2006). Efficient semiparametric estimator for heteroscedastic partially linear models. Biometrika 93 75–84.
  • [17] Ma, Y. and Genton, M. G. (2010). Explicit estimating equations for semiparametric generalized linear latent variable models. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 475–495.
  • [18] Ma, Y., Genton, M. G. and Tsiatis, A. A. (2005). Locally efficient semiparametric estimators for generalized skew-elliptical distributions. J. Amer. Statist. Assoc. 100 980–989.
  • [19] Ma, Y. and Hart, J. D. (2007). Constrained local likelihood estimators for semiparametric skew-normal distributions. Biometrika 94 119–134.
  • [20] Ma, Y. and Zhu, L. (2012). A semiparametric approach to dimension reduction. J. Amer. Statist. Assoc. 107 168–179.
  • [21] Ma, Y. and Zhu, L. (2013). Supplement to “Efficient estimation in sufficient dimension reduction.” DOI:10.1214/12-AOS1072SUPP.
  • [22] Newey, W. (1990). Semiparametric efficiency bounds. J. Appl. Econometrics 5 99–135.
  • [23] Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. J. Amer. Statist. Assoc. 89 846–866.
  • [24] Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. Springer, New York.
  • [25] Tsiatis, A. A. and Ma, Y. (2004). Locally efficient semiparametric estimators for functional measurement error models. Biometrika 91 835–848.
  • [26] Xia, Y. (2007). A constructive approach to the estimation of dimension reduction directions. Ann. Statist. 35 2654–2690.
  • [27] Zeng, D. and Lin, D. Y. (2007). Efficient estimation in the accelerated failure time model. J. Amer. Statist. Assoc. 102 1387–1396.
  • [28] Zeng, D. and Lin, D. Y. (2007). Maximum likelihood estimation in semiparametric models with censored data (with discussion). J. Roy. Statist. Soc. Ser. B 69 507–564.
  • [29] Zhu, L.-P., Zhu, L.-X. and Feng, Z.-H. (2010). Dimension reduction in regressions through cumulative slicing estimation. J. Amer. Statist. Assoc. 105 1455–1466.
  • [30] Zhu, Y. and Zeng, P. (2006). Fourier methods for estimating the central subspace and the central mean subspace in regression. J. Amer. Statist. Assoc. 101 1638–1651.

Supplemental materials

  • Supplementary material: Supplement to “Efficient estimation in sufficient dimension reduction”. The supplement file aos1072_supp.pdf is available upon request. It contains derivations of the efficient score for model (2.1) and an outline of proof for Theorems 1 and 2.