Annals of Statistics
- Ann. Statist.
- Volume 40, Number 6 (2012), 3050-3076.
Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm
Leif T. Johnson and Charles J. Geyer
Full-text: Open access
Abstract
A random-walk Metropolis sampler is geometrically ergodic if its equilibrium density is super-exponentially light and satisfies a curvature condition [Stochastic Process. Appl. 85 (2000) 341–361]. Many applications, including Bayesian analysis with conjugate priors of logistic and Poisson regression and of log-linear models for categorical data result in posterior distributions that are not super-exponentially light. We show how to apply the change-of-variable formula for diffeomorphisms to obtain new densities that do satisfy the conditions for geometric ergodicity. Sampling the new variable and mapping the results back to the old gives a geometrically ergodic sampler for the original variable. This method of obtaining geometric ergodicity has very wide applicability.
Article information
Source
Ann. Statist., Volume 40, Number 6 (2012), 3050-3076.
Dates
First available in Project Euclid: 22 February 2013
Permanent link to this document
https://projecteuclid.org/euclid.aos/1361542074
Digital Object Identifier
doi:10.1214/12-AOS1048
Mathematical Reviews number (MathSciNet)
MR3097969
Zentralblatt MATH identifier
1302.46033
Subjects
Primary: 60J05: Discrete-time Markov processes on general state spaces 65C05: Monte Carlo methods
Secondary: 60J22: Computational methods in Markov chains [See also 65C40]
Keywords
Markov chain Monte Carlo change of variable exponential family conjugate prior Markov chain isomorphism drift condition Metropolis–Hastings–Green algorithm
Citation
Johnson, Leif T.; Geyer, Charles J. Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm. Ann. Statist. 40 (2012), no. 6, 3050--3076. doi:10.1214/12-AOS1048. https://projecteuclid.org/euclid.aos/1361542074
References
- Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, Chichester.
- Brooks, S., Gelman, A., Jones, G. L. and Meng, X.-L., eds. (2011). Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, Boca Raton, FL.
- Chan, K. S. (1993). On the central limit theorem for an ergodic Markov chain. Stochastic Process. Appl. 47 113–117.Mathematical Reviews (MathSciNet): MR1232855
Zentralblatt MATH: 0786.60022
Digital Object Identifier: doi:10.1016/0304-4149(93)90097-N - Chan, K. S. and Geyer, C. J. (1994). Comment on “Markov chains for exploring posterior distributions.” Ann. Statist. 22 1747–1758.Mathematical Reviews (MathSciNet): MR1329166
Zentralblatt MATH: 0829.62080
Digital Object Identifier: doi:10.1214/aos/1176325750
Project Euclid: euclid.aos/1176325750 - Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann. Statist. 7 269–281.Mathematical Reviews (MathSciNet): MR520238
Zentralblatt MATH: 0405.62011
Digital Object Identifier: doi:10.1214/aos/1176344611
Project Euclid: euclid.aos/1176344611 - Flegal, J. M. and Jones, G. L. (2010). Batch means and spectral variance estimators in Markov chain Monte Carlo. Ann. Statist. 38 1034–1070.Mathematical Reviews (MathSciNet): MR2604704
Zentralblatt MATH: 1184.62161
Digital Object Identifier: doi:10.1214/09-AOS735
Project Euclid: euclid.aos/1266586622 - Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398–409.Mathematical Reviews (MathSciNet): MR1141740
Zentralblatt MATH: 0702.62020
Digital Object Identifier: doi:10.1080/01621459.1990.10476213 - Geman, S. and Geman, D. (1984). Stochastic relaxtion, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721–741.
- Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7 473–511.
- Geyer, C. J. (2011). Introduction to MCMC. In Handbook of Markov Chain Monte Carlo (S. P. Brooks, A. E. Gelman, G. L. Jones and X. L. Meng, eds.). Chapman & Hall/CRC, Boca Raton.Mathematical Reviews (MathSciNet): MR2742422
- Geyer, C. J. and Johnson, L. T. (2012). mcmc: Markov Chain Monte Carlo. R package version 0.8. Available at http://CRAN.R-project.org/package=mcmc.
- Geyer, C. J. and Møller, J. (1994). Simulation procedures and likelihood inference for spatial point processes. Scand. J. Stat. 21 359–373.Mathematical Reviews (MathSciNet): MR1310082
- Gilks, W. R., Richardson, S. and Spiegelhalter, D. J., eds. (1996). Markov Chain Monte Carlo in Practice. Interdisciplinary Statistics. Chapman & Hall, London.
- Gordin, M. I. and Lifšic, B. A. (1978). Central limit theorem for stationary Markov processes. Dokl. Akad. Nauk SSSR 239 766–767.Mathematical Reviews (MathSciNet): MR501277
- Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711–732.Mathematical Reviews (MathSciNet): MR1380810
Zentralblatt MATH: 0861.62023
Digital Object Identifier: doi:10.1093/biomet/82.4.711 - Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. Springer, New York.Mathematical Reviews (MathSciNet): MR1467237
- Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97–109.
- Hobert, J. P. and Geyer, C. J. (1998). Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model. J. Multivariate Anal. 67 414–430.Mathematical Reviews (MathSciNet): MR1659196
Zentralblatt MATH: 0922.60069
Digital Object Identifier: doi:10.1006/jmva.1998.1778 - Jarner, S. F. and Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 341–361.Mathematical Reviews (MathSciNet): MR1731030
Zentralblatt MATH: 0997.60070
Digital Object Identifier: doi:10.1016/S0304-4149(99)00082-4 - Jarner, S. F. and Roberts, G. O. (2002). Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 224–247.Mathematical Reviews (MathSciNet): MR1890063
Zentralblatt MATH: 1012.60062
Digital Object Identifier: doi:10.1214/aoap/1015961162
Project Euclid: euclid.aoap/1015961162 - Jarner, S. F. and Roberts, G. O. (2007). Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Stat. 34 781–815.Mathematical Reviews (MathSciNet): MR2396939
- Jarner, S. F. and Tweedie, R. L. (2003). Necessary conditions for geometric and polynomial ergodicity of random-walk-type Markov chains. Bernoulli 9 559–578.Mathematical Reviews (MathSciNet): MR1996270
Digital Object Identifier: doi:10.3150/bj/1066223269
Project Euclid: euclid.bj/1066223269 - Johnson, A. A. and Jones, G. L. (2010). Gibbs sampling for a Bayesian hierarchical general linear model. Electron. J. Stat. 4 313–333.Mathematical Reviews (MathSciNet): MR2645487
Digital Object Identifier: doi:10.1214/09-EJS515
Project Euclid: euclid.ejs/1268655652 - Jones, G. L. (2004). On the Markov chain central limit theorem. Probab. Surv. 1 299–320.Mathematical Reviews (MathSciNet): MR2068475
Zentralblatt MATH: 1189.60129
Digital Object Identifier: doi:10.1214/154957804100000051
Project Euclid: euclid.ps/1104335301 - Jones, G. L. and Hobert, J. P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist. 32 784–817.Mathematical Reviews (MathSciNet): MR2060178
Zentralblatt MATH: 1048.62069
Digital Object Identifier: doi:10.1214/009053604000000184
Project Euclid: euclid.aos/1083178947 - Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1–19.Mathematical Reviews (MathSciNet): MR834478
Zentralblatt MATH: 0588.60058
Digital Object Identifier: doi:10.1007/BF01210789
Project Euclid: euclid.cmp/1104114929 - Łatuszyński, K., Miasojedow, B. and Niemiro, W. (2012). Nonasymptotic bounds on the estimation error of MCMC algorithms. Bernoulli. To appear.
- Łatuszyński, K. and Niemiro, W. (2011). Rigorous confidence bounds for MCMC under a geometric drift condition. J. Complexity 27 23–38.Mathematical Reviews (MathSciNet): MR2745298
Zentralblatt MATH: 1210.65004
Digital Object Identifier: doi:10.1016/j.jco.2010.07.003 - Maigret, N. (1978). Théorème de limite centrale fonctionnel pour une chaî ne de Markov récurrente au sens de Harris et positive. Ann. Inst. H. Poincaré Sect. B (N.S.) 14 425–440.Mathematical Reviews (MathSciNet): MR523221
- Mengersen, K. L. and Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24 101–121.Mathematical Reviews (MathSciNet): MR1389882
Zentralblatt MATH: 0854.60065
Digital Object Identifier: doi:10.1214/aos/1033066201
Project Euclid: euclid.aos/1033066201 - Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys. 31 1087–1092.
- Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd ed. Cambridge Univ. Press, Cambridge.Mathematical Reviews (MathSciNet): MR2509253
- Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics 83. Cambridge Univ. Press, Cambridge.Mathematical Reviews (MathSciNet): MR776608
- Papaspiliopoulos, O., Roberts, G. O. and Sköld, M. (2007). A general framework for the parametrization of hierarchical models. Statist. Sci. 22 59–73.Mathematical Reviews (MathSciNet): MR2408661
Digital Object Identifier: doi:10.1214/088342307000000014
Project Euclid: euclid.ss/1185975637 - Papaspiliopoulos, O. and Roberts, G. (2008). Stability of the Gibbs sampler for Bayesian hierarchical models. Ann. Statist. 36 95–117.Mathematical Reviews (MathSciNet): MR2387965
Zentralblatt MATH: 1144.65007
Digital Object Identifier: doi:10.1214/009053607000000749
Project Euclid: euclid.aos/1201877295 - Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab. 2 13–25 (electronic).Mathematical Reviews (MathSciNet): MR1448322
Zentralblatt MATH: 0890.60061
Digital Object Identifier: doi:10.1214/ECP.v2-981 - Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20–71.Mathematical Reviews (MathSciNet): MR2095565
Zentralblatt MATH: 1189.60131
Digital Object Identifier: doi:10.1214/154957804100000024
Project Euclid: euclid.ps/1099928648 - Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. J. Roy. Statist. Soc. Ser. B 59 291–317.
- Roberts, G. O. and Tweedie, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 95–110.Mathematical Reviews (MathSciNet): MR1399158
Zentralblatt MATH: 0888.60064
Digital Object Identifier: doi:10.1093/biomet/83.1.95 - Rockafellar, R. T. and Wets, R. J. B. (1998). Variational Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 317. Springer, Berlin.Mathematical Reviews (MathSciNet): MR1491362
- Rosenthal, J. S. (1995a). Analysis of the Gibbs sampler for a model related to James–Stein estimators. Stat. Comput. 6 269–275.
- Rosenthal, J. S. (1995b). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558–566.Mathematical Reviews (MathSciNet): MR1340509
Zentralblatt MATH: 0824.60077
Digital Object Identifier: doi:10.1080/01621459.1995.10476548 - Roy, V. and Hobert, J. P. (2007). Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 607–623.Mathematical Reviews (MathSciNet): MR2370071
Digital Object Identifier: doi:10.1111/j.1467-9868.2007.00602.x - Stromberg, K. R. (1981). Introduction to Classical Real Analysis. Wadsworth International, Belmont, CA.
- Tan, A. and Hobert, J. P. (2009). Block Gibbs sampling for Bayesian random effects models with improper priors: Convergence and regeneration. J. Comput. Graph. Statist. 18 861–878.
- Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528–550.Mathematical Reviews (MathSciNet): MR898357
Zentralblatt MATH: 0619.62029
Digital Object Identifier: doi:10.1080/01621459.1987.10478458 - Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22 1701–1762.Mathematical Reviews (MathSciNet): MR1329166
Zentralblatt MATH: 0829.62080
Digital Object Identifier: doi:10.1214/aos/1176325750
Project Euclid: euclid.aos/1176325750

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Exponential ergodicity of the bouncy particle sampler
Deligiannidis, George, Bouchard-Côté, Alexandre, and Doucet, Arnaud, Annals of Statistics, 2019 - On the ergodicity properties of some adaptive MCMC algorithms
Andrieu, Christophe and Moulines, Éric, Annals of Applied Probability, 2006 - On the ergodicity of the adaptive Metropolis algorithm on unbounded domains
Saksman, Eero and Vihola, Matti, Annals of Applied Probability, 2010
- Exponential ergodicity of the bouncy particle sampler
Deligiannidis, George, Bouchard-Côté, Alexandre, and Doucet, Arnaud, Annals of Statistics, 2019 - On the ergodicity properties of some adaptive MCMC algorithms
Andrieu, Christophe and Moulines, Éric, Annals of Applied Probability, 2006 - On the ergodicity of the adaptive Metropolis algorithm on unbounded domains
Saksman, Eero and Vihola, Matti, Annals of Applied Probability, 2010 - Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms
Andrieu, Christophe and Vihola, Matti, Annals of Applied Probability, 2015 - On random almost periodic trigonometric polynomials and applications to ergodic theory
Cohen, Guy and Cuny, Christophe, Annals of Probability, 2006 - Necessary conditions for geometric and polynomial ergodicity of random-walk-type
Jarner, Søren F. and Tweedie, Richard L., Bernoulli, 2003 - On the Geometric Ergodicity of Two-Variable Gibbs Samplers
Tan, Aixin, Jones, Galin L., and Hobert, James P., Advances in Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton, 2013 - Optimal scaling of the independence sampler: Theory and practice
Lee, Clement and Neal, Peter, Bernoulli, 2018 - Practical drift conditions for subgeometric rates of convergence
Douc, Randal, Fort, Gersende, Moulines, Eric, and Soulier, Philippe, Annals of Applied Probability, 2004 - Bayesian Analysis for Dynamic Generalized Linear Latent Model with Application to Tree Survival Rate
Cheng, Yu-sheng, Ding, Mei-wen, Xia, Ye-mao, and Zhan, Wen-fa, Journal of Applied Mathematics, 2014
