The Annals of Statistics

Flexible generalized varying coefficient regression models

Young K. Lee, Enno Mammen, and Byeong U. Park

Full-text: Open access

Abstract

This paper studies a very flexible model that can be used widely to analyze the relation between a response and multiple covariates. The model is nonparametric, yet renders easy interpretation for the effects of the covariates. The model accommodates both continuous and discrete random variables for the response and covariates. It is quite flexible to cover the generalized varying coefficient models and the generalized additive models as special cases. Under a weak condition we give a general theorem that the problem of estimating the multivariate mean function is equivalent to that of estimating its univariate component functions. We discuss implications of the theorem for sieve and penalized least squares estimators, and then investigate the outcomes in full details for a kernel-type estimator. The kernel estimator is given as a solution of a system of nonlinear integral equations. We provide an iterative algorithm to solve the system of equations and discuss the theoretical properties of the estimator and the algorithm. Finally, we give simulation results.

Article information

Source
Ann. Statist., Volume 40, Number 3 (2012), 1906-1933.

Dates
First available in Project Euclid: 16 October 2012

Permanent link to this document
https://projecteuclid.org/euclid.aos/1350394521

Digital Object Identifier
doi:10.1214/12-AOS1026

Mathematical Reviews number (MathSciNet)
MR3015048

Zentralblatt MATH identifier
1257.62040

Subjects
Primary: 62G08: Nonparametric regression
Secondary: 62G20: Asymptotic properties

Keywords
Varying coefficient models kernel smoothing entropy projection Hilbert space quasi-likelihood integral equation Newton–Raphson approximation

Citation

Lee, Young K.; Mammen, Enno; Park, Byeong U. Flexible generalized varying coefficient regression models. Ann. Statist. 40 (2012), no. 3, 1906--1933. doi:10.1214/12-AOS1026. https://projecteuclid.org/euclid.aos/1350394521


Export citation

References

  • Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient models. J. Amer. Statist. Assoc. 95 888–902.
  • Cai, Z., Fan, J. and Yao, Q. (2000). Functional-coefficient regression models for nonlinear time series. J. Amer. Statist. Assoc. 95 941–956.
  • Chen, X. and Shen, X. (1998). Sieve extremum estimates for weakly dependent data. Econometrica 66 289–314.
  • Chen, R. and Tsay, R. S. (1993). Functional-coefficient autoregressive models. J. Amer. Statist. Assoc. 88 298–308.
  • Deimling, K. (1985). Nonlinear Functional Analysis. Springer, Berlin.
  • Fan, J., Yao, Q. and Cai, Z. (2003). Adaptive varying-coefficient linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 57–80.
  • Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficient models. Ann. Statist. 27 1491–1518.
  • Fan, J. and Zhang, W. (2000). Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand. J. Stat. 27 715–731.
  • Fengler, M., Härdle, W. and Mammen, E. (2007). A semiparametric factor model for implied volatility surface dynamics. Journal of Financial Econometrics 5 189–218.
  • Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B 55 757–796.
  • Heim, S., Fahrmeir, L., Eilers, P. H. C. and Marx, B. D. (2007). 3D space-varying coefficient models with application to diffusion tensor imaging. Comput. Statist. Data Anal. 51 6212–6228.
  • Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85 809–822.
  • Huang, J. Z., Wu, C. O. and Zhou, L. (2002). Varying-coefficient models and basis function approximations for the analysis of repeated measurements. Biometrika 89 111–128.
  • Huang, J. Z., Wu, C. O. and Zhou, L. (2004). Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Statist. Sinica 14 763–788.
  • Kauermann, G. and Tutz, G. (1999). On model diagnostics using varying coefficient models. Biometrika 86 119–128.
  • Lee, Y. K., Mammen, E. and Park, B. U. (2010). Backfitting and smooth backfitting for additive quantile models. Ann. Statist. 38 2857–2883.
  • Lee, Y. K., Mammen, E. and Park, B. U. (2012). Projection-type estimation for varying coefficient regression models. Bernoulli 18 177–205.
  • Mammen, E., Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27 1443–1490.
  • Mammen, E. and Nielsen, J. P. (2003). Generalised structured models. Biometrika 90 551–566.
  • Mammen, E. and Park, B. U. (2005). Bandwidth selection for smooth backfitting in additive models. Ann. Statist. 33 1260–1294.
  • Mammen, E. and van de Geer, S. (1997). Penalized quasi-likelihood estimation in partial linear models. Ann. Statist. 25 1014–1035.
  • Noh, H. S. and Park, B. U. (2010). Sparse varying coefficient models for longitudinal data. Statist. Sinica 20 1183–1202.
  • Park, B. U., Mammen, E., Härdle, W. and Borak, S. (2009). Time series modelling with semiparametric factor dynamics. J. Amer. Statist. Assoc. 104 284–298.
  • Roca-Pardiñas, J. and Sperlich, S. (2010). Feasible estimation in generalized structured models. Stat. Comput. 20 367–379.
  • van de Geer, S. (2000). Empirical Processes in M-Estimation. Cambridge Univ. Press, Cambridge.
  • Wang, L., Li, H. and Huang, J. Z. (2008). Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J. Amer. Statist. Assoc. 103 1556–1569.
  • Xue, L. and Yang, L. (2006). Additive coefficient modeling via polynomial spline. Statist. Sinica 16 1423–1446.
  • Yang, L., Park, B. U., Xue, L. and Härdle, W. (2006). Estimation and testing for varying coefficients in additive models with marginal integration. J. Amer. Statist. Assoc. 101 1212–1227.
  • Yu, K., Park, B. U. and Mammen, E. (2008). Smooth backfitting in generalized additive models. Ann. Statist. 36 228–260.