The Annals of Statistics

An asymptotic error bound for testing multiple quantum hypotheses

Michael Nussbaum and Arleta Szkoła

Full-text: Open access

Abstract

We consider the problem of detecting the true quantum state among r possible ones, based of measurements performed on n copies of a finite-dimensional quantum system. A special case is the problem of discriminating between r probability measures on a finite sample space, using n i.i.d. observations. In this classical setting, it is known that the averaged error probability decreases exponentially with exponent given by the worst case binary Chernoff bound between any possible pair of the r probability measures. Define analogously the multiple quantum Chernoff bound, considering all possible pairs of states. Recently, it has been shown that this asymptotic error bound is attainable in the case of r pure states, and that it is unimprovable in general. Here we extend the attainability result to a larger class of r-tuples of states which are possibly mixed, but pairwise linearly independent. We also construct a quantum detector which universally attains the multiple quantum Chernoff bound up to a factor 1/3.

Article information

Source
Ann. Statist. Volume 39, Number 6 (2011), 3211-3233.

Dates
First available in Project Euclid: 9 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.aos/1336568601

Digital Object Identifier
doi:10.1214/11-AOS933

Mathematical Reviews number (MathSciNet)
MR3012406

Zentralblatt MATH identifier
1246.62226

Subjects
Primary: 62P35: Applications to physics 62G10: Hypothesis testing

Keywords
Quantum statistics density operators Bayesian discrimination exponential error rate Holevo–Helstrom tests quantum Chernoff bound

Citation

Nussbaum, Michael; Szkoła, Arleta. An asymptotic error bound for testing multiple quantum hypotheses. Ann. Statist. 39 (2011), no. 6, 3211--3233. doi:10.1214/11-AOS933. https://projecteuclid.org/euclid.aos/1336568601


Export citation

References

  • [1] Assalini, A., Cariolaro, G. and Pierobon, G. (2010). Efficient optimal minimum error discrimination of symmetric quantum states. Phys. Rev. A 81 012315.
  • [2] Audenaert, K. M. R., Casamiglia, J., Munoz-Tapia, R., Bagan, E., Masanes, L., Acin, A. and Verstraete, F. (2007). Discriminating states: The quantum chernoff bound. Phys. Rev. Lett. 98 160501.
  • [3] Audenaert, K. M. R., Nussbaum, M., Szkoła, A. and Verstraete, F. (2008). Asymptotic error rates in quantum hypothesis testing. Comm. Math. Phys. 279 251–283.
  • [4] Barnett, S. M. and Croke, S. (2009). On the conditions for discrimination between quantum states with minimum error. J. Phys. A 42 062001, 4.
  • [5] Barnum, H. and Knill, E. (2002). Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43 2097–2106.
  • [6] Belavkin, V. P. (1975). Optimal multiple quantum statistical hypothesis testing. Stochastics 1 315–345.
  • [7] Bergou, J. A., Herzog, U. and Hillery, M. (2004). Discrimination of quantum states. In Quantum State Estimation. Lecture Notes in Physics 649 417–465. Springer, Berlin.
  • [8] Calsamiglia, J., Munoz-Tapia, R., Masanes, L., Acin, A. and Bagan, E. (2008). The quantum Chernoff bound as a measure of distinguishability between density matrices: Application to qubit and Gaussian states. Phys. Rev. A 77 032311.
  • [9] Chefles, A. (2000). Quantum state discrimination. Contemp. Phys. 41 401.
  • [10] Eldar, Y. C. (2003). von Neumann measurement is optimal for detecting linearly independent mixed quantum states. Phys. Rev. A (3) 68 052303, 4.
  • [11] Hayashi, M. (2006). Quantum Information. An introduction. Springer, Berlin.
  • [12] Helstrom, C. W. (1976). Quantum Detection and Estimation Theory. Acadamic Press, New York.
  • [13] Hiai, F., Mosonyi, M. and Ogawa, T. (2007). Large deviations and Chernoff bound for certain correlated states on a spin chain. J. Math. Phys. 48 123301, 19.
  • [14] Holevo, A. S. (1973). Statistical decision theory for quantum systems. J. Multivariate Anal. 3 337–394.
  • [15] Holevo, A. S. (1974). Remarks on optimal quantum measurements. Probl. Inf. Transm. 10 51–55.
  • [16] Holevo, A. S. (1978). On asymptotically optimal hypothesis testing in quantum statistics. Theory Probab. Appl. 23 411–415.
  • [17] Hwang, W.-Y. and Bae, J. (2010). Minimum-error state discrimination constrained by the no-signaling principle. J. Math. Phys. 51 022202, 11.
  • [18] Kimura, G., Miyadera, T. and Imai, H. (2008). Optimal state discrimination in general probabilistic theories. Phys. Rev. A 79 062306.
  • [19] König, R., Renner, R. and Schaffner, C. (2009). The operational meaning of min- and max-entropy. IEEE Trans. Inform. Theory 55 4337–4347.
  • [20] Krob, J. and v. Weizsäcker, H. (1997). On the rate of information gain in experiments with a finite parameter set. Statist. Decisions 15 281–294.
  • [21] Montanaro, A. (2007). On the distinguishability of random quantum states. Comm. Math. Phys. 273 619–636.
  • [22] Nussbaum, M. and Szkoła, A. (2009). The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Statist. 37 1040–1057.
  • [23] Nussbaum, M. and Szkoła, A. (2010). Exponential error rates in multiple state discrimination on a quantum spin chain. J. Math. Phys. 51 072203, 11.
  • [24] Nussbaum, M. and Szkoła, A. (2011). Asymptotically optimal discrimination between multiple pure quantum states. In Theory of Quantum Computation, Communication and Cryptography. 5th Conference, TQC 2010, Leeds, UK. Revised Selected Papers (W. van Dam, V. M. Kendon and S. Severini, eds.). Lecture Notes in Computer Science 6519 1–8. Springer, Berlin.
  • [25] Parthasarathy, K. R. (1999). Extremal decision rules in quantum hypothesis testing. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 557–568.
  • [26] Parthasarathy, K. R. (2001). On consistency of the maximum likelihood method in testing multiple quantum hypotheses. In Stochastics in Finite and Infinite Dimensions 361–377. Birkhäuser, Boston, MA.
  • [27] Qiu, D. and Li, L. (2010). Minimum-error discrimination of quantum states: New bounds and comparisons. Phys. Rev. A 81 042329.
  • [28] Salihov, N. P. (1973). Asymptotic properties of error probabilities of tests for distinguishing between several multinomial testing schemes. Dokl. Akad. Nauk SSSR 209 54–57.
  • [29] Salikhov, N. P. (1998). On a generalization of Chernoff distance. Teor. Veroyatn. Primen. 43 294–314. Translation in Theory Probab. Appl. 43 (1999) 239–255.
  • [30] Salikhov, N. P. (2002). Optimal sequences of tests for the discrimination of several multinomial schemes of trials. Teor. Veroyatn. Primen. 47 270–285. Translation in Theory Probab. Appl. 47 (2003) 286–298.
  • [31] Torgersen, E. N. (1981). Measures of information based on comparison with total information and with total ignorance. Ann. Statist. 9 638–657.
  • [32] Tyson, J. (2009). Two-sided estimates for minimum-error distinguishability of mixed quantum states via generalized Holevo–Curlander bounds. J. Math. Phys. 50 032106, 10.
  • [33] Tyson, J. (2010). Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates. J. Math. Phys. 51 092204, 35.
  • [34] Yuen, H. P., Kennedy, R. S. and Lax, M. (1975). Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inform. Theory 21 125–134.