The Annals of Statistics

Single and multiple index functional regression models with nonparametric link

Dong Chen, Peter Hall, and Hans-Georg Müller

Full-text: Open access

Abstract

Fully nonparametric methods for regression from functional data have poor accuracy from a statistical viewpoint, reflecting the fact that their convergence rates are slower than nonparametric rates for the estimation of high-dimensional functions. This difficulty has led to an emphasis on the so-called functional linear model, which is much more flexible than common linear models in finite dimension, but nevertheless imposes structural constraints on the relationship between predictors and responses. Recent advances have extended the linear approach by using it in conjunction with link functions, and by considering multiple indices, but the flexibility of this technique is still limited. For example, the link may be modeled parametrically or on a grid only, or may be constrained by an assumption such as monotonicity; multiple indices have been modeled by making finite-dimensional assumptions. In this paper we introduce a new technique for estimating the link function nonparametrically, and we suggest an approach to multi-index modeling using adaptively defined linear projections of functional data. We show that our methods enable prediction with polynomial convergence rates. The finite sample performance of our methods is studied in simulations, and is illustrated by an application to a functional regression problem.

Article information

Source
Ann. Statist., Volume 39, Number 3 (2011), 1720-1747.

Dates
First available in Project Euclid: 25 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.aos/1311600281

Digital Object Identifier
doi:10.1214/11-AOS882

Mathematical Reviews number (MathSciNet)
MR2850218

Zentralblatt MATH identifier
1220.62040

Subjects
Primary: 62G05: Estimation 62G08: Nonparametric regression

Keywords
Functional data analysis generalized functional linear model prediction smoothing

Citation

Chen, Dong; Hall, Peter; Müller, Hans-Georg. Single and multiple index functional regression models with nonparametric link. Ann. Statist. 39 (2011), no. 3, 1720--1747. doi:10.1214/11-AOS882. https://projecteuclid.org/euclid.aos/1311600281


Export citation

References

  • [1] Aguilera, A. M., Escabias, M. and Valderrama, M. J. (2008). Discussion of different logistic models with functional data. Application to systemic Lupus Erythematosus. Comput. Statist. Data Anal. 53 151–163.
  • [2] Ait-Saïdi, A., Ferraty, F., Kassa, R. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model. Statistics 42 475–494.
  • [3] Borggaard, C. and Thodberg, H. (1992). Optimal minimal neural interpretation of spectra. Analytical Chemistry 64 545–551.
  • [4] Cai, T. T. and Hall, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159–2179.
  • [5] Cardot, H., Crambes, C., Kneip, A. and Sarda, P. (2007). Smoothing splines estimators in functional linear regression with errors-in-variables. Comput. Statist. Data Anal. 51 4832–4848.
  • [6] Chiou, J.-M. and Müller, H.-G. (2004). Quasi-likelihood regression with multiple indices and smooth link and variance functions. Scand. J. Stat. 31 367–386.
  • [7] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. Ann. Statist. 37 35–72.
  • [8] Dabo-Niang, S. (2002). Estimation de la densité dans un espace de dimension infinie: Application aux diffusions. C. R. Math. Acad. Sci. Paris 334 213–216.
  • [9] Escabias, M., Aguilera, A. M. and Valderrama, M. J. (2004). Principal component estimation of functional logistic regression: Discussion of two different approaches. J. Nonparametr. Stat. 16 365–384.
  • [10] Escabias, M., Aguilera, A. M. and Valderrama, M. J. (2007). Functional PLS logit regression model. Comput. Statist. Data Anal. 51 4891–4902.
  • [11] Ferraty, F. and Vieu, P. (2004). Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination. J. Nonparametr. Stat. 16 111–125.
  • [12] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York.
  • [13] Hitczenko, P. (1990). Best constants in martingale version of Rosenthal’s inequality. Ann. Probab. 18 1656–1668.
  • [14] James, G. M. (2002). Generalized linear models with functional predictors. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 411–432.
  • [15] James, G. M. and Silverman, B. W. (2005). Functional adaptive model estimation. J. Amer. Statist. Assoc. 100 565–576.
  • [16] Johnson, W. B., Schechtman, G. and Zinn, J. (1985). Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13 234–253.
  • [17] Müller, H.-G. and Stadtmüller, U. (2005). Generalized functional linear models. Ann. Statist. 33 774–805.