Annals of Statistics
- Ann. Statist.
- Volume 39, Number 3 (2011), 1496-1525.
Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices
Full-text: Open access
Abstract
Testing covariance structure is of significant interest in many areas of statistical analysis and construction of compressed sensing matrices is an important problem in signal processing. Motivated by these applications, we study in this paper the limiting laws of the coherence of an n × p random matrix in the high-dimensional setting where p can be much larger than n. Both the law of large numbers and the limiting distribution are derived. We then consider testing the bandedness of the covariance matrix of a high-dimensional Gaussian distribution which includes testing for independence as a special case. The limiting laws of the coherence of the data matrix play a critical role in the construction of the test. We also apply the asymptotic results to the construction of compressed sensing matrices.
Article information
Source
Ann. Statist., Volume 39, Number 3 (2011), 1496-1525.
Dates
First available in Project Euclid: 13 May 2011
Permanent link to this document
https://projecteuclid.org/euclid.aos/1305292044
Digital Object Identifier
doi:10.1214/11-AOS879
Mathematical Reviews number (MathSciNet)
MR2850210
Zentralblatt MATH identifier
1220.62066
Subjects
Primary: 62H12: Estimation 60F05: Central limit and other weak theorems
Secondary: 60F15: Strong theorems 62H10: Distribution of statistics
Keywords
Chen–Stein method coherence compressed sensing matrix covariance structure law of large numbers limiting distribution maxima moderate deviations mutual incoherence property random matrix sample correlation matrix
Citation
Cai, T. Tony; Jiang, Tiefeng. Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices. Ann. Statist. 39 (2011), no. 3, 1496--1525. doi:10.1214/11-AOS879. https://projecteuclid.org/euclid.aos/1305292044
References
- Achlioptas, D. (2003). Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66 671–687.Mathematical Reviews (MathSciNet): MR2005771
Zentralblatt MATH: 1054.68040
Digital Object Identifier: doi:10.1016/S0022-0000(03)00025-4 - Anderson, G. W., Guionnet, A. and Zeitouni, O. (2009). An Introduction to Random Matrices. Cambridge Univ. Press, Cambridge.
- Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59 817–858.Mathematical Reviews (MathSciNet): MR1106513
Digital Object Identifier: doi:10.2307/2938229
Zentralblatt MATH: 0732.62052 - Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approximations: The Chen–Stein method. Ann. Probab. 17 9–25.Zentralblatt MATH: 0675.60017
Digital Object Identifier: doi:10.1214/aop/1176991491
Project Euclid: euclid.aop/1176991491 - Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: By an example of a two sample problem. Statist. Sinica 6 311–329.
- Bai, Z. and Silverstein, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed. Springer, New York.
- Bai, Z. D., Miao, B. Q. and Pan, G. M. (2007). On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 1532–1572.Mathematical Reviews (MathSciNet): MR2330979
Zentralblatt MATH: 1162.15012
Digital Object Identifier: doi:10.1214/009117906000001079
Project Euclid: euclid.aop/1181334252 - Bai, Z., Jiang, D., Yao, J.-F. and Zheng, S. (2009). Corrections to LRT on large-dimensional covariance matrix by RMT. Ann. Statist. 37 3822–3840.Mathematical Reviews (MathSciNet): MR2572444
Zentralblatt MATH: 05644257
Digital Object Identifier: doi:10.1214/09-AOS694
Project Euclid: euclid.aos/1256303528 - Baraniuk, R., Davenport, M., DeVore, R. and Wakin, M. (2008). A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28 253–263.Mathematical Reviews (MathSciNet): MR2453366
Digital Object Identifier: doi:10.1007/s00365-007-9003-x
Zentralblatt MATH: 1177.15015 - Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37 1705–1732.Mathematical Reviews (MathSciNet): MR2533469
Zentralblatt MATH: 1173.62022
Digital Object Identifier: doi:10.1214/08-AOS620
Project Euclid: euclid.aos/1245332830 - Cai, T. and Jiang, T. (2010). Supplement to “Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices.” DOI:10.1214/11-AOS879SUPP.Mathematical Reviews (MathSciNet): MR2850210
Digital Object Identifier: doi:10.1214/11-AOS879
Project Euclid: euclid.aos/1305292044 - Cai, T. T. and Lv, J. (2007). Discussion: “The Dantzig selector: Statistical estimation when p is much larger than n,” by E. Candes and T. Tao. Ann. Statist. 35 2365–2369.Mathematical Reviews (MathSciNet): MR2382647
Digital Object Identifier: doi:10.1214/009053607000000442
Project Euclid: euclid.aos/1201012961 - Cai, T. T., Wang, L. and Xu, G. (2010a). Shifting inequality and recovery of sparse signals. IEEE Trans. Signal Process. 58 1300–1308.Mathematical Reviews (MathSciNet): MR2730209
Digital Object Identifier: doi:10.1109/TSP.2009.2034936
Zentralblatt MATH: 1392.94117 - Cai, T. T., Wang, L. and Xu, G. (2010b). Stable recovery of sparse signals and an oracle inequality. IEEE Trans. Inform. Theory 56 3516–3522.Mathematical Reviews (MathSciNet): MR2799010
Digital Object Identifier: doi:10.1109/TIT.2010.2048506
Zentralblatt MATH: 1366.94085 - Cai, T. T., Zhang, C.-H. and Zhou, H. H. (2010). Optimal rates of convergence for covariance matrix estimation. Ann. Statist. 38 2118–2144.Mathematical Reviews (MathSciNet): MR2676885
Zentralblatt MATH: 1202.62073
Digital Object Identifier: doi:10.1214/09-AOS752
Project Euclid: euclid.aos/1278861244 - Candès, E. J. and Plan, Y. (2009). Near-ideal model selection by ℓ1 minimization. Ann. Statist. 37 2145–2177.Mathematical Reviews (MathSciNet): MR2543688
Zentralblatt MATH: 1173.62053
Digital Object Identifier: doi:10.1214/08-AOS653
Project Euclid: euclid.aos/1247663751 - Candes, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Inform. Theory 51 4203–4215.Mathematical Reviews (MathSciNet): MR2243152
Digital Object Identifier: doi:10.1109/TIT.2005.858979
Zentralblatt MATH: 1264.94121 - Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n (with discussion). Ann. Statist. 35 2313–2351.Mathematical Reviews (MathSciNet): MR2382644
Zentralblatt MATH: 1139.62019
Digital Object Identifier: doi:10.1214/009053606000001523
Project Euclid: euclid.aos/1201012958 - Chen, X. (1990). Moderate deviations of B-valued independent random vectors. Chinese Ann. Math. Ser. A 11 621–629.
- Chen, X. (1991). Moderate deviations of independent random vectors in a Banach space. Chinese J. Appl. Probab. Statist. 7 24–32.
- Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York.
- Diaconis, P. W., Eaton, M. L. and Lauritzen, S. L. (1992). Finite de Finetti theorems in linear models and multivariate analysis. Scand. J. Statist. 19 289–315.
- Donoho, D. L. (2006a). Compressed sensing. IEEE Trans. Inform. Theory 52 1289–1306.Mathematical Reviews (MathSciNet): MR2241189
Digital Object Identifier: doi:10.1109/TIT.2006.871582
Zentralblatt MATH: 1288.94016 - Donoho, D. L. (2006b). For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 797–829.Mathematical Reviews (MathSciNet): MR2217606
Zentralblatt MATH: 1113.15004
Digital Object Identifier: doi:10.1002/cpa.20132 - Donoho, D. L. and Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47 2845–2862.Mathematical Reviews (MathSciNet): MR1872845
Digital Object Identifier: doi:10.1109/18.959265
Zentralblatt MATH: 1019.94503 - Donoho, D. L., Elad, M. and Temlyakov, V. N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52 6–18.Mathematical Reviews (MathSciNet): MR2237332
Digital Object Identifier: doi:10.1109/TIT.2005.860430
Zentralblatt MATH: 1288.94017 - Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 849–911.Mathematical Reviews (MathSciNet): MR2530322
Digital Object Identifier: doi:10.1111/j.1467-9868.2008.00674.x
Zentralblatt MATH: 1411.62187 - Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statist. Sinica 20 101–148.
- Fuchs, J.-J. (2004). On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory 50 1341–1344.Mathematical Reviews (MathSciNet): MR2094894
Digital Object Identifier: doi:10.1109/TIT.2004.828141
Zentralblatt MATH: 1284.94018 - Jiang, T. (2004a). The asymptotic distributions of the largest entries of sample correlation matrices. Ann. Appl. Probab. 14 865–880.Mathematical Reviews (MathSciNet): MR2052906
Zentralblatt MATH: 1047.60014
Digital Object Identifier: doi:10.1214/105051604000000143
Project Euclid: euclid.aoap/1082737115 - Jiang, T. (2004b). The limiting distributions of eigenvalues of sample correlation matrices. Sankhyā 66 35–48.
- Jiang, T. (2005). Maxima of entries of Haar distributed matrices. Probab. Theory Related Fields 131 121–144.Mathematical Reviews (MathSciNet): MR2105046
Zentralblatt MATH: 1067.15021
Digital Object Identifier: doi:10.1007/s00440-004-0376-5 - Jiang, T. (2006). How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab. 34 1497–1529.Mathematical Reviews (MathSciNet): MR2257653
Zentralblatt MATH: 1107.15018
Digital Object Identifier: doi:10.1214/009117906000000205
Project Euclid: euclid.aop/1158673325 - Jiang, T. (2009). The entries of circular orthogonal ensembles. J. Math. Phys. 50 063302, 13.Mathematical Reviews (MathSciNet): MR2536107
Zentralblatt MATH: 1216.60010
Digital Object Identifier: doi:10.1063/1.3152217 - Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295–327.Mathematical Reviews (MathSciNet): MR1863961
Zentralblatt MATH: 1016.62078
Digital Object Identifier: doi:10.1214/aos/1009210544
Project Euclid: euclid.aos/1009210544 - Johnstone, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence. Ann. Statist. 36 2638–2716.Mathematical Reviews (MathSciNet): MR2485010
Zentralblatt MATH: 05503373
Digital Object Identifier: doi:10.1214/08-AOS605
Project Euclid: euclid.aos/1231165182 - Ledoux, M. (1992). Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré Probab. Statist. 28 267–280.Zentralblatt MATH: 0751.60009
- Li, D. and Rosalsky, A. (2006). Some strong limit theorems for the largest entries of sample correlation matrices. Ann. Appl. Probab. 16 423–447.Mathematical Reviews (MathSciNet): MR2209348
Zentralblatt MATH: 1098.60034
Digital Object Identifier: doi:10.1214/105051605000000773
Project Euclid: euclid.aoap/1141654293 - Li, D., Liu, W. D. and Rosalsky, A. (2009). Necessary and sufficient conditions for the asymptotic distribution of the largest entry of a sample correlation matrix. Probab. Theory Related Fields 148 5–35.Mathematical Reviews (MathSciNet): MR2653220
Zentralblatt MATH: 1210.62010
Digital Object Identifier: doi:10.1007/s00440-009-0220-z - Ligeralde, A. and Brown, B. (1995). Band covariance matrix estimation using restricted residuals: A Monte Carlo analysis. Internat. Econom. Rev. 36 751–767.
- Liu, W.-D., Lin, Z. and Shao, Q.-M. (2008). The asymptotic distribution and Berry–Esseen bound of a new test for independence in high dimension with an application to stochastic optimization. Ann. Appl. Probab. 18 2337–2366.Mathematical Reviews (MathSciNet): MR2474539
Zentralblatt MATH: 1154.60021
Digital Object Identifier: doi:10.1214/08-AAP527
Project Euclid: euclid.aoap/1227708921 - Péché, S. (2009). Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields 143 481–516.Mathematical Reviews (MathSciNet): MR2475670
Zentralblatt MATH: 1167.62019
Digital Object Identifier: doi:10.1007/s00440-007-0133-7 - Sakhanenko, A. I. (1991). Estimates of Berry–Esseen type for the probabilities of large deviations. Sibirsk. Mat. Zh. 32 133–142, 228.
- Zhou, W. (2007). Asymptotic distribution of the largest off-diagonal entry of correlation matrices. Trans. Amer. Math. Soc. 359 5345–5363.Mathematical Reviews (MathSciNet): MR2327033
Zentralblatt MATH: 1130.60032
Digital Object Identifier: doi:10.1090/S0002-9947-07-04192-X
Supplemental materials
- Supplementary material: Additional technical proofs. We give complete proofs for some technical lemmas used in the proofs of the main results.Digital Object Identifier: doi:10.1214/11-AOS879SUPP

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Extreme eigenvalues of large-dimensional spiked Fisher matrices with application
Wang, Qinwen and Yao, Jianfeng, Annals of Statistics, 2017 - Two sample tests for high-dimensional covariance matrices
Li, Jun and Chen, Song Xi, Annals of Statistics, 2012 - Tests for covariance matrix with fixed or divergent dimension
Zhang, Rongmao, Peng, Liang, and Wang, Ruodu, Annals of Statistics, 2013
- Extreme eigenvalues of large-dimensional spiked Fisher matrices with application
Wang, Qinwen and Yao, Jianfeng, Annals of Statistics, 2017 - Two sample tests for high-dimensional covariance matrices
Li, Jun and Chen, Song Xi, Annals of Statistics, 2012 - Tests for covariance matrix with fixed or divergent dimension
Zhang, Rongmao, Peng, Liang, and Wang, Ruodu, Annals of Statistics, 2013 - Largest entries of sample correlation matrices from equi-correlated normal populations
Fan, Jianqing and Jiang, Tiefeng, Annals of Probability, 2019 - Spectral analysis of high-dimensional sample covariance matrices with missing observations
Jurczak, Kamil and Rohde, Angelika, Bernoulli, 2017 - Large-sample approximations for variance-covariance matrices of high-dimensional time series
Steland, Ansgar and von Sachs, Rainer, Bernoulli, 2017 - Hypothesis testing on linear structures of high-dimensional covariance matrix
Zheng, Shurong, Chen, Zhao, Cui, Hengjian, and Li, Runze, Annals of Statistics, 2019 - A significance test for the lasso
Lockhart, Richard, Taylor, Jonathan, Tibshirani, Ryan J., and Tibshirani, Robert, Annals of Statistics, 2014 - Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence
Johnstone, Iain M., Annals of Statistics, 2008 - Posterior contraction in sparse Bayesian factor models for massive covariance matrices
Pati, Debdeep, Bhattacharya, Anirban, Pillai, Natesh S., and Dunson, David, Annals of Statistics, 2014
