The Annals of Statistics

Möbius deconvolution on the hyperbolic plane with application to impedance density estimation

Stephan F. Huckemann, Peter T. Kim, Ja-Yong Koo, and Axel Munk

Full-text: Open access


In this paper we consider a novel statistical inverse problem on the Poincaré, or Lobachevsky, upper (complex) half plane. Here the Riemannian structure is hyperbolic and a transitive group action comes from the space of 2 × 2 real matrices of determinant one via Möbius transformations. Our approach is based on a deconvolution technique which relies on the Helgason–Fourier calculus adapted to this hyperbolic space. This gives a minimax nonparametric density estimator of a hyperbolic density that is corrupted by a random Möbius transform. A motivation for this work comes from the reconstruction of impedances of capacitors where the above scenario on the Poincaré plane exactly describes the physical system that is of statistical interest.

Article information

Ann. Statist., Volume 38, Number 4 (2010), 2465-2498.

First available in Project Euclid: 11 July 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G07: Density estimation
Secondary: 43A80: Analysis on other specific Lie groups [See also 22Exx]

Cayley transform cross-validation deconvolution Fourier analysis Helgason–Fourier transform hyperbolic space impedance Laplace–Beltrami operator Möbius transformation special linear group statistical inverse problems upper half-plane


Huckemann, Stephan F.; Kim, Peter T.; Koo, Ja-Yong; Munk, Axel. Möbius deconvolution on the hyperbolic plane with application to impedance density estimation. Ann. Statist. 38 (2010), no. 4, 2465--2498. doi:10.1214/09-AOS783.

Export citation


  • [1] Abramovich, F. and Silverman, B. (1998). Wavelet decomposition approaches to statistical inverse problems. Biometrika 85 115–129.
  • [2] Allen, J. C. and Healy Jr., D. M. (2003). Hyperbolic geometry, Nehari’s theorem, electric circuits, and analog signal processing. Modern Signal Processing 46 1–62.
  • [3] Bhattacharya, R. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds I. Ann. Statist. 31 1–29.
  • [4] Bhattacharya, R. and Patrangenaru, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds II. Ann. Statist. 33 1225–1259.
  • [5] Bissantz, N., Hohage, T., Munk, A. and Ruymgaart, F. (2007). Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45 2610–2636.
  • [6] Brown, B. H. (2001). Medical impedance tomography and process impedance tomography: A brief review. Meas. Sci. Technol. 12 991–996.
  • [7] Butucea, C. and Tsybakov, A. (2007). Sharp optimality for density deconvolution with dominating bias, I; II. Theory Probab. Appl. 52 111–128; 336–349.
  • [8] Cavalier, L., Golubev, G., Lepski, O. and Tsybakov, A. (2003). Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems. Theory Probab. Appl. 48 534–556.
  • [9] Cavalier, L., Golubev, G., Picard, D. and Tsybakov, A. (2002). Oracle inequalities for inverse problems. Ann. Statist. 30 843–874.
  • [10] Collin, R. E. (1992). Foundations for Microwave Engineering. McGraw-Hill, New York.
  • [11] Delaigle, A. and Gijbels, I. (2004). Practical bandwidth selection in deconvolution kernel density estimation. Comput. Statist. Data Anal. 45 249–267.
  • [12] Delaigle, A., Hall, P. and Meister, A. (2008). On deconvolution with repeated measurements. Ann. Statist. 36 665–685.
  • [13] Dey, A., Mair, B. and Ruymgaart, F. (1996). Cross-validation for parameter selection in inverse estimation problems. Scand. J. Statist. 23 609–620.
  • [14] Ewart, G., Mills, K., Cox, G. and Gage, P. (2002). Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur. Biophys. J. 31 26–35.
  • [15] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problem. Ann. Statist. 19 1257–1272.
  • [16] Goldenshluger, A. (1999). On pointwise adaptive nonparametric deconvolution. Bernoulli 5 907–926.
  • [17] Hahn, G., Just, A., Dittmar, J. and Hellig, G. (2008). Systematic errors of EIT systems determined by easily-scalable resistive phantoms. Physiol. Meas. 29 163–172.
  • [18] Hall, P. and Meister, A. (2007). A ridge-parameter approach to deconvolution. Ann. Statist. 35 1535–1558.
  • [19] Hall, P. and Qiu, P. (2005). Discrete-transform approach to deconvolution problems. Biometrika 92 135–148.
  • [20] Helton, J. W. (1982). Non-Euclidean functional analysis and electronics. Bull. Amer. Math. Soc. (N.S.) 7 1–64.
  • [21] Johnstone, I. M., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004). Wavelet deconvolution in a periodic setting. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 547–573.
  • [22] Johnstone, I. M. and Raimondo, M. (2004). Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist. 32 1781–1804.
  • [23] Johnstone, I. M. and Silverman, B. W. (1991). Discretization effects in statistical inverse problems. J. Complexity 7 1–34.
  • [24] Kalifa, J. and Mallat, S. (2003). Thresholding estimators for linear inverse problems and deconvolutions. Ann. Statist. 31 58–109.
  • [25] Kass, R. E. and Vos, P. W. (1997). Geometrical Foundations of Asymptotic Inference. Wiley, New York.
  • [26] Kerkyacharian, G., Petrushev, P., Picard, D. B. and Willer, T. (2007). Needlet algorithms for estimation in inverse problems. Electron. J. Stat. 1 30–76.
  • [27] Kim, P. T. and Koo, J.-Y. (2005). Statistical inverse problems on manifolds. J. Fourier Anal. Appl. 11 639–653.
  • [28] Kim, P. T. and Richards, D. S. (2001). Deconvolution density estimation on compact Lie groups. In Algebraic Methods in Statistics and Probability (Notre Dame, IN, 2000). Contemporary Mathematics 287 155–171. Amer. Math. Soc., Providence, RI.
  • [29] Kim, P. T. and Richards, D. S. (2008). Diffusion tensor imaging and deconvolution on the space of positive definite symmetric matrices. In Mathematical Foundations of Computational Anatomy: Geometric and Statistical Methods for Biological Shape Variability Modeling (X. Pennec and S. Joshi, eds.) 140–149. Available at
  • [30] Lebedev, N. (1972). Special Functions and Their Applications. Dover, New York.
  • [31] Lee, J. M. (1997). Riemannian Manifolds: An Introduction to Curvature. Springer, New York.
  • [32] Lovric, M., Min-Oo, M. and Ruh, E. A. (2000). Multivariate normal distributions parametrized as a riemannian symmetric space. J. Multivariate Anal. 74 36–48.
  • [33] Mair, B. A. and Ruymgaart, F. H. (1996). Statistical inverse estimation in Hilbert scales. SIAM J. Appl. Math. 56 1424–1444.
  • [34] McCullaugh, P. (1992). Conditional inference and cauchy models. Biometrika 79 247–259.
  • [35] McCullaugh, P. (1996). Möbius transformation and Cauchy parameter estimation. Ann. Statist. 24 787–808.
  • [36] Mizera, I. and Müller, C. (2004). Location-scale depth (with discussion). J. Amer. Statist. Assoc. 99 949–966.
  • [37] Neubauer, A. (2008). The convergence of a new heuristic parameter selection criterion for general regularization methods. Inverse Problems 24 055005.
  • [38] Nevanlinna, R. and Paatero, V. (1964). Einführung in die Funtkionentheorie. Birkhäuser, Basel.
  • [39] Pensky, M. and Sapatinas, T. (2009). Functional deconvolution in a periodic setting: Uniform case. Ann. Statist. 37 73–104.
  • [40] Pereverzev, S. and Schock, E. (2005). On the adaptive selection of the parameter in regularization of ill-posed problems. SIAM J. Numer. Anal. 43 2060–2076.
  • [41] Römer, W. and Steinem, C. (2004). Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. Biophys. J. 86 955–965.
  • [42] Szkutnik, Z. (2003). Doubly smoothed EM algorithm for statistical inverse problems. J. Amer. Statist. Assoc. 98 178–190.
  • [43] Terras, A. (1985). Harmonic Analysis on Symmetric Spaces and Applications. I. Springer, New York.
  • [44] Van Es, B., Gugushvili, S. and Spreij, P. (2008). Deconvolution for an atomic distribution. Electron. J. Stat. 2 265–297.
  • [45] Wand, M. P. and Jones, M. C. (1994). Kernel Smoothing. Chapman and Hall, London.