Annals of Statistics
- Ann. Statist.
- Volume 38, Number 3 (2010), 1767-1792.
Asymptotics and optimal bandwidth selection for highest density region estimation
Abstract
We study kernel estimation of highest-density regions (HDR). Our main contributions are two-fold. First, we derive a uniform-in-bandwidth asymptotic approximation to a risk that is appropriate for HDR estimation. This approximation is then used to derive a bandwidth selection rule for HDR estimation possessing attractive asymptotic properties. We also present the results of numerical studies that illustrate the benefits of our theory and methodology.
Article information
Source
Ann. Statist., Volume 38, Number 3 (2010), 1767-1792.
Dates
First available in Project Euclid: 24 March 2010
Permanent link to this document
https://projecteuclid.org/euclid.aos/1269452654
Digital Object Identifier
doi:10.1214/09-AOS766
Mathematical Reviews number (MathSciNet)
MR2662359
Zentralblatt MATH identifier
1189.62061
Subjects
Primary: 62G07: Density estimation 62G20: Asymptotic properties
Keywords
Density contour density level set kernel density estimator plug-in bandwidth selection
Citation
Samworth, R. J.; Wand, M. P. Asymptotics and optimal bandwidth selection for highest density region estimation. Ann. Statist. 38 (2010), no. 3, 1767--1792. doi:10.1214/09-AOS766. https://projecteuclid.org/euclid.aos/1269452654

