The Annals of Statistics

Adjusted empirical likelihood with high-order precision

Yukun Liu and Jiahua Chen

Full-text: Open access

Abstract

Empirical likelihood is a popular nonparametric or semi-parametric statistical method with many nice statistical properties. Yet when the sample size is small, or the dimension of the accompanying estimating function is high, the application of the empirical likelihood method can be hindered by low precision of the chi-square approximation and by nonexistence of solutions to the estimating equations. In this paper, we show that the adjusted empirical likelihood is effective at addressing both problems. With a specific level of adjustment, the adjusted empirical likelihood achieves the high-order precision of the Bartlett correction, in addition to the advantage of a guaranteed solution to the estimating equations. Simulation results indicate that the confidence regions constructed by the adjusted empirical likelihood have coverage probabilities comparable to or substantially more accurate than the original empirical likelihood enhanced by the Bartlett correction.

Article information

Source
Ann. Statist., Volume 38, Number 3 (2010), 1341-1362.

Dates
First available in Project Euclid: 8 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aos/1268056619

Digital Object Identifier
doi:10.1214/09-AOS750

Mathematical Reviews number (MathSciNet)
MR2662345

Zentralblatt MATH identifier
1189.62054

Subjects
Primary: 62G20: Asymptotic properties
Secondary: 62E20: Asymptotic distribution theory

Keywords
Bartlett correction confidence region Edgeworth expansion estimating function generalized moment method

Citation

Liu, Yukun; Chen, Jiahua. Adjusted empirical likelihood with high-order precision. Ann. Statist. 38 (2010), no. 3, 1341--1362. doi:10.1214/09-AOS750. https://projecteuclid.org/euclid.aos/1268056619


Export citation

References

  • Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the Edgeworth expansion. Ann. Statist. 6 431–451.
  • Brown, B. W. and Newey, W. K. (2002). Generalized method of moments, efficient bootstrapping, and improved inference. J. Bus. Econom. Statist. 20 507–517.
  • Burnside, C. and Eichenbaum, M. (1996). Small-sample properties of GMM-based Wald tests. J. Bus. Econom. Statist. 14 294–308.
  • Chen, J., Variyath, A. M. and Abraham, B. (2008). Adjusted empirical likelihood and its properties. J. Comput. Graph. Statist. 17 426–443.
  • Chen, S. X. (1993). On the accuracy of empirical likelihood confidence regions for linear regression model. Ann. Inst. Statist. Math. 45 621–637.
  • Chen, S. X. and Cui, H. J. (2006). On Bartlett correction of empirical likelihood in the presence of nuisance parameters. Biometrika 93 215–220.
  • Chen, S. X. and Cui, H. J. (2007). On the second-order properties of empirical likelihood with moment restrictions. J. Econometrics 141 492–516.
  • Corcoran, S. A. (1998). Bartlett adjustment of empirical discrepancy statistics. Biometrika 85 967–972.
  • Corcoran, S. A., Davison, A. C. and Spady, R. H. (1995). Reliable inference from empirical likelihood. Economics Working Paper 10, Nuffield College, Univ. Oxford.
  • DiCiccio, T. J., Hall, P. and Romano, J. P. (1991). Empirical likelihood is Bartlett-correctable. Ann. Statist. 19 1053–1061.
  • Emerson, S. and Owen, A. (2009). Calibration of the empirical likelihood method for a vector mean. Electron. J. Statist. 3 1161–1192.
  • Hall, P. and La Scala, B. (1990). Methodology and algorithms of empirical likelihood. Internat. Statist. Rev. 58 109–127.
  • Hall, P. and Horowitz, J. L. (1996). Bootstrap critical values for tests based on generalized-method-of-moments estimators. Econometrica 64 891–916.
  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50 1029–1054.
  • Imbens, G. W. (1997). One-step estimators for over-identified generalized method of moments models. Rev. Econom. Stud. 64 359–383.
  • Imbens, G. W., Spady, R. H. and Johnson, P. (1998). Informative theoretic approaches to inference in moment condition models. Econometrica 66 333–357.
  • Kitamura, Y. and Stutzer, M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica 65 861–874.
  • Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13–22.
  • Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In Handbook of Econometrics 4 2111–2245. North-Holland, Amsterdam.
  • Newey, W. K. and Smith, R. J. (2004). Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72 219–255.
  • Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237–249.
  • Owen, A. B. (2001). Empirical Likelihood. Chapman and Hall/CRC Press, New York.
  • Qin, J. and Lawless, J. (1994). Empirical likelihood and general equations. Ann. Statist. 22 300–325.
  • Schennach, S. M. (2007). Point estimation with exponentially tilted empirical likelihood. Ann. Statist. 35 634–672.
  • Smith, R. J. (1997). Alternative semi-parametric likelihood approaches to generalized method of moments estimation. Economic Journal 107 503–519.
  • Tsao, M. (2004). Bounds on coverage probabilities of the empirical likelihood ratio confidence regions. Ann. Statist. 32 1215–1221.