The Annals of Statistics

Specification testing in nonlinear and nonstationary time series autoregression

Jiti Gao, Maxwell King, Zudi Lu, and Dag Tjøstheim

Full-text: Open access

Abstract

This paper considers a class of nonparametric autoregressive models with nonstationarity. We propose a nonparametric kernel test for the conditional mean and then establish an asymptotic distribution of the proposed test. Both the setting and the results differ from earlier work on nonparametric autoregression with stationarity. In addition, we develop a new bootstrap simulation scheme for the selection of a suitable bandwidth parameter involved in the kernel test as well as the choice of a simulated critical value. The finite-sample performance of the proposed test is assessed using one simulated example and one real data example.

Article information

Source
Ann. Statist., Volume 37, Number 6B (2009), 3893-3928.

Dates
First available in Project Euclid: 23 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.aos/1256303531

Digital Object Identifier
doi:10.1214/09-AOS698

Mathematical Reviews number (MathSciNet)
MR2572447

Zentralblatt MATH identifier
1191.62148

Subjects
Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84] 62G07: Density estimation
Secondary: 60F05: Central limit and other weak theorems

Keywords
Cointegration kernel test nonparametric regression nonstationary time series time series econometrics

Citation

Gao, Jiti; King, Maxwell; Lu, Zudi; Tjøstheim, Dag. Specification testing in nonlinear and nonstationary time series autoregression. Ann. Statist. 37 (2009), no. 6B, 3893--3928. doi:10.1214/09-AOS698. https://projecteuclid.org/euclid.aos/1256303531


Export citation

References

  • Arapis, M. and Gao, J. (2006). Empirical comparisons in short-term interest rate models using nonparametric methods. J. Financial Econometrics 4 310–345.
  • Bandi, F. and Phillips, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica 71 241–283.
  • Brockwell, P. and Davis, R. (1990). Time Series Theory and Methods. Springer, New York.
  • Chow, Y. S. and Teicher, H. (1988). Probability Theory. Springer, New York.
  • Dickey, D. A. and Fuller, W. A. (1979). Distribution of estimators for autoregressive time series with a unit root. J. Amer. Statist. Assoc. 74 427–431.
  • Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York.
  • Fan, Y. and Linton, O. (2003). Some higher theory for a consistent nonparametric model specification test. J. Statist. Plann. Inference 109 125–154.
  • Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods. Chapman & Hall, London.
  • Gao, J. and Gijbels, I. (2008). Bandwidth selection in nonparametric kernel testing. J. Amer. Statist. Assoc. 484 1584–1594.
  • Gao, J. and King, M. L. (2004). Adaptive testing in continuous-time diffusion models. Econometric Theory 20 844–883.
  • Gao, J., King, M. L., Lu, Z. and Tjøstheim, D. (2006). Specification testing in nonlinear time series with nonstationarity. Available at http://www.adelaide.edu.au/directory/jiti.gao.
  • Gao, J., King, M. L., Lu, Z. and Tjøstheim, D. (2008). Specification testing in nonlinear and nonstationary time series autoregression. Supplementary material available from the first author.
  • Gao, J., Lu, Z. and Tjøstheim, D. (2006). Estimation in semiparametric spatial regression. Ann. Statist. 34 1395–1435.
  • Granger, C. W. J., Inoue, T. and Morin, N. (1997). Nonlinear stochastic trends. J. Econometrics 81 65–92.
  • Granger, C. W. J. and Teräsvirta, T. (1993). Modelling Nonlinear Dynamic Relationships. Oxford Univ. Press, Oxford.
  • Hall, P. and Heyde, C. (1980). Martingale Limit Theory and Its Applications. Academic Press, New York.
  • Hjellvik, V., Yao, Q. and Tjøstheim, D. (1998). Linearity testing using local polynomial approximation. J. Statist. Plann. Inference 68 295–321.
  • Jiang, G. (1998). Nonparametric modelling of US interest rate term structure dynamics and implication on the prices of derivative securities. J. Financial and Quantitative Analysis 33 465–497.
  • Karlsen, H. and Tjøstheim, D. (1998). Nonparametric Estimation in Null Recurrent Time Series 50. Sonderforschungsbereich 373, Humboldt Univ., Berlin.
  • Karlsen, H. and Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time series. Ann. Statist. 29 372–416.
  • Karlsen, H., Myklebust, T. and Tjøstheim, D. (2007). Nonparametric estimation in a nonlinear cointegration model. Ann. Statist. 35 252–299.
  • Li, Q. (1999). Consistent model specification tests for time series econometric models. J. Econometrics 92 101–147.
  • Li, Q. and Wang, S. (1998). A simple consistent bootstrap tests for a parametric regression functional form. J. Econometrics 87 145–165.
  • Masry, E. and Tjøstheim, D. (1995). Nonparametric estimation and identification of nonlinear ARCH models. Econometric Theory 11 258–289.
  • Park, J. and Phillips, P. C. B. (2001). Nonlinear regressions with integrated time series. Econometrica 69 117–162.
  • Phillips, P. C. B. and Park, J. (1998). Nonstationary density estimation and kernel autoregression. Cowles Foundation Discussion Paper, No. 1181, Yale Univ.
  • Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford Univ. Press, Oxford.
  • Wang, Q. and Phillips, P. C. B. (2009). Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory 25 710–738.