The Annals of Statistics

Common functional principal components

Michal Benko, Wolfgang Härdle, and Alois Kneip

Full-text: Open access

Abstract

Functional principal component analysis (FPCA) based on the Karhunen–Loève decomposition has been successfully applied in many applications, mainly for one sample problems. In this paper we consider common functional principal components for two sample problems. Our research is motivated not only by the theoretical challenge of this data situation, but also by the actual question of dynamics of implied volatility (IV) functions. For different maturities the log-returns of IVs are samples of (smooth) random functions and the methods proposed here study the similarities of their stochastic behavior. First we present a new method for estimation of functional principal components from discrete noisy data. Next we present the two sample inference for FPCA and develop the two sample theory. We propose bootstrap tests for testing the equality of eigenvalues, eigenfunctions, and mean functions of two functional samples, illustrate the test-properties by simulation study and apply the method to the IV analysis.

Article information

Source
Ann. Statist. Volume 37, Number 1 (2009), 1-34.

Dates
First available in Project Euclid: 16 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.aos/1232115926

Digital Object Identifier
doi:10.1214/07-AOS516

Mathematical Reviews number (MathSciNet)
MR2488343

Zentralblatt MATH identifier
1169.62057

Subjects
Primary: 62H25: Factor analysis and principal components; correspondence analysis 62G08: Nonparametric regression
Secondary: 62P05: Applications to actuarial sciences and financial mathematics

Keywords
Functional principal components nonparametric regression bootstrap two sample problem

Citation

Benko, Michal; Härdle, Wolfgang; Kneip, Alois. Common functional principal components. Ann. Statist. 37 (2009), no. 1, 1--34. doi:10.1214/07-AOS516. https://projecteuclid.org/euclid.aos/1232115926.


Export citation

References

  • Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York.
  • Besse, P. and Ramsay, J. (1986). Principal components of sampled functions. Psychometrika 51 285–311.
  • Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Political Economy 81 637–654.
  • Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136–154.
  • Fengler, M. (2005a). Arbitrage-free smoothing of the implied volatility surface. SFB 649 Discussion Paper No. 2005–019, SFB 649, Humboldt-Universität zu Berlin.
  • Fengler, M. (2005b). Semiparametric Modeling of Implied Volatility. Springer, Berlin.
  • Fengler, M., Härdle, W. and Villa, P. (2003). The dynamics of implied volatilities: A common principle components approach. Rev. Derivative Research 6 179–202.
  • Fengler, M., Härdle, W. and Mammen, E. (2007). A dynamic semiparametric factor model for implied volatility string dynamics. Financial Econometrics 5 189–218.
  • Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. Springer, New York.
  • Flury, B. (1988). Common Principal Components and Related Models. Wiley, New York.
  • Gihman, I. I. and Skorohod, A. V. (1973). The Theory of Stochastic Processes. II. Springer, New York.
  • Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. Roy. Statist. Soc. Ser. B 68 109–126.
  • Hall, P., Müller, H. G. and Wang, J. L. (2006). Properties of principal components methods for functional and longitudinal data analysis. Ann. Statist. 34 1493–1517.
  • Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 520–528.
  • Hafner, R. (2004). Stochastic Implied Volatility. Springer, Berlin.
  • Härdle, W. and Simar, L. (2003). Applied Multivariate Statistical Analysis. Springer, Berlin.
  • Kahalé, N. (2004). An arbitrage-free interpolation of volatilities. Risk 17 102–106.
  • Kneip, A. and Utikal, K. (2001). Inference for density families using functional principal components analysis. J. Amer. Statist. Assoc. 96 519–531.
  • Lacantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T. and Cohen, K. L. (1999). Robust principal component analysis for functional data. Test 8 1–73.
  • Pezzulli, S. D. and Silverman, B. (1993). Some properties of smoothed principal components analysis for functional data. Comput. Statist. 8 1–16.
  • Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis (with discussion). J. Roy. Statist. Soc. Ser. B 53 539–572.
  • Ramsay, J. and Silverman, B. (2002). Applied Functional Data Analysis. Springer, New York.
  • Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer, New York.
  • Rao, C. (1958). Some statistical methods for comparison of growth curves. Biometrics 14 1–17.
  • Rice, J. and Silverman, B. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 233–243.
  • Silverman, B. (1996). Smoothed functional principal components analysis by choice of norm. Ann. Statist. 24 1–24.
  • Tyler, D. E. (1981). Asymptotic inference for eigenvectors. Ann. Statist. 9 725–736.
  • Yao, F., Müller, H. G. and Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577–590.