Annals of Statistics
- Ann. Statist.
- Volume 36, Number 6 (2008), 2638-2716.
Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence
Full-text: Open access
Abstract
Let A and B be independent, central Wishart matrices in p variables with common covariance and having m and n degrees of freedom, respectively. The distribution of the largest eigenvalue of (A+B)−1B has numerous applications in multivariate statistics, but is difficult to calculate exactly. Suppose that m and n grow in proportion to p. We show that after centering and scaling, the distribution is approximated to second-order, O(p−2/3), by the Tracy–Widom law. The results are obtained for both complex and then real-valued data by using methods of random matrix theory to study the largest eigenvalue of the Jacobi unitary and orthogonal ensembles. Asymptotic approximations of Jacobi polynomials near the largest zero play a central role.
Article information
Source
Ann. Statist., Volume 36, Number 6 (2008), 2638-2716.
Dates
First available in Project Euclid: 5 January 2009
Permanent link to this document
https://projecteuclid.org/euclid.aos/1231165182
Digital Object Identifier
doi:10.1214/08-AOS605
Mathematical Reviews number (MathSciNet)
MR2485010
Zentralblatt MATH identifier
1284.62320
Subjects
Primary: 62H10: Distribution of statistics
Secondary: 62E20: Asymptotic distribution theory 15A52
Keywords
Canonical correlation analysis characteristic roots Fredholm determinant Jacobi polynomials largest root Liouville–Green multivariate analysis of variance random matrix theory Roy’s test soft edge Tracy–Widom distribution
Citation
Johnstone, Iain M. Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy–Widom limits and rates of convergence. Ann. Statist. 36 (2008), no. 6, 2638--2716. doi:10.1214/08-AOS605. https://projecteuclid.org/euclid.aos/1231165182
References
- Absil, P.-A., Edelman, A. and Koev, P. (2006). On the largest principal angle between random subspaces. Linear Algebra Appl. 414 288–294.Mathematical Reviews (MathSciNet): MR2209246
Zentralblatt MATH: 1090.15017
Digital Object Identifier: doi:10.1016/j.laa.2005.10.004 - Adler, M., Forrester, P. J., Nagao, T. and van Moerbeke, P. (2000). Classical skew-orthogonal polynomials and random matrices. J. Statist. Phys. 99 141–170.Mathematical Reviews (MathSciNet): MR1762659
Zentralblatt MATH: 0989.82020
Digital Object Identifier: doi:10.1023/A:1018644606835 - Aubin, J.-P. (1979). Applied Functional Analysis. Wiley, New York.Mathematical Reviews (MathSciNet): MR549483
- Baik, J., Borodin, A., Deift, P. and Suidan, T. (2006). A model for the bus system in Cuernavaca (Mexico). J. Phys. A 39 8965–8975.Mathematical Reviews (MathSciNet): MR2240467
Digital Object Identifier: doi:10.1088/0305-4470/39/28/S11 - Bosbach, C. and Gawronski, W. (1999). Strong asymptotics for Jacobi polnomials with varying weights. Methods Appl. Anal. 6 39–54.Mathematical Reviews (MathSciNet): MR1803880
- Carteret, H. A., Ismail, M. E. H. and Richmond, B. (2003). Three routes to the exact asymptotics for the one-dimensional quantum walk. J. Phys. A 36 8775–8795.Mathematical Reviews (MathSciNet): MR2008667
Zentralblatt MATH: 1049.82025
Digital Object Identifier: doi:10.1088/0305-4470/36/33/305 - Chen, C. W. (1971). On some problems in canonical correlation analysis. Biometrika 58 399–400.
- Chen, L.-C. and Ismail, M. E. H. (1991). On asymptotics of Jacobi polynomials. SIAM J. Math. Anal. 22 1442–1449.Mathematical Reviews (MathSciNet): MR1112518
Zentralblatt MATH: 0735.33004
Digital Object Identifier: doi:10.1137/0522092 - Collins, B. (2005). Product of random projections, Jacobi ensembles and universality problems arising from free probability. Probab. Theory Related Fields 133 315–344.Mathematical Reviews (MathSciNet): MR2198015
Zentralblatt MATH: 1100.46036
Digital Object Identifier: doi:10.1007/s00440-005-0428-5 - Constantine, A. G. (1963). Some noncentral distribution problems in multivariate analysis. Ann. Math. Statist. 34 1270–1285.Mathematical Reviews (MathSciNet): MR181056
Zentralblatt MATH: 0123.36801
Digital Object Identifier: doi:10.1214/aoms/1177703863
Project Euclid: euclid.aoms/1177703863 - Deift, P. (2007). Universality for mathematical and physical systems. In Proceedings of the International Congress of Mathematicians I 125–152. Eur. Math. Soc., Zürich.
- Deift, P. and Gioev, D. (2007). Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Comm. Pure Appl. Math. 60 867–910.Mathematical Reviews (MathSciNet): MR2306224
Zentralblatt MATH: 1119.15022
Digital Object Identifier: doi:10.1002/cpa.20164 - Deift, P., Gioev, D., Kriecherbauer, T. and Vanlessen, M. (2007). Universality for orthogonal and symplectic Laguerre-type ensembles. J. Statist. Phys. 129 949–1053.Mathematical Reviews (MathSciNet): MR2363388
Zentralblatt MATH: 1136.15014
Digital Object Identifier: doi:10.1007/s10955-007-9325-x - Dumitriu, I. and Koev, P. (2008). Distributions of the extreme eigenvalues of Beta-Jacobi random matrices. SIAM J. Matrix Anal. Appl. 30 1–6.Mathematical Reviews (MathSciNet): MR2399565
Zentralblatt MATH: 1158.15304
Digital Object Identifier: doi:10.1137/050643234 - Dunster, T. M. (1999). Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions. Methods Appl. Anal. 6 281–316.
- Dyson, F. J. (1970). Correlations between eigenvalues of a random matrix. Comm. Math. Phys. 19 235–250.Mathematical Reviews (MathSciNet): MR278668
Zentralblatt MATH: 0221.62019
Digital Object Identifier: doi:10.1007/BF01646824
Project Euclid: euclid.cmp/1103842703 - El Karoui, N. (2006). A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. Ann. Probab. 34 2077–2117.Mathematical Reviews (MathSciNet): MR2294977
Zentralblatt MATH: 1108.62014
Digital Object Identifier: doi:10.1214/009117906000000502
Project Euclid: euclid.aop/1171377438 - Forrester, P. J. (2004). Log-gases and Random matrices. Book manuscript. Available at http://www.ms.unimelb.edu.au/~matpjf/matpjf.html.
- Gohberg, I. C. and Krein, M. G. (1969). Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs 18. Amer. Math. Soc., Providence, RI.
- Gohberg, I., Goldberg, S. and Krupnik, N. (2000). Traces and Determinants of Linear Operators. Birkhäuser, Basel.Mathematical Reviews (MathSciNet): MR1744872
- Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press.Mathematical Reviews (MathSciNet): MR1417720
- Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Integrals, Series, and Products, corrected and enlarged edition. Translated from Russian. ed. A. Jeffrey. Academic Press, New York.
- James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 475–501.Mathematical Reviews (MathSciNet): MR181057
Zentralblatt MATH: 0121.36605
Digital Object Identifier: doi:10.1214/aoms/1177703550
Project Euclid: euclid.aoms/1177703550 - Jiang, T. (2008). Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Related Fields. DOI: 10.1007/s00440-008-0146-x.Mathematical Reviews (MathSciNet): MR2480790
Zentralblatt MATH: 1162.60005
Digital Object Identifier: doi:10.1007/s00440-008-0146-x - Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295–327.Mathematical Reviews (MathSciNet): MR1863961
Zentralblatt MATH: 1016.62078
Digital Object Identifier: doi:10.1214/aos/1009210544
Project Euclid: euclid.aos/1009210544 - Johnstone, I. M. (2007). High-dimensional statistical inference and random matrices. In Proceedings of the International Congress of Mathematicians I 307–333. Eur. Math. Soc., Zürich.
- Johnstone, I. M. (2009). Approximate null distribution of the largest root in multivariate analysis. Ann. Appl. Statist. To appear.
- Khatri, C. (1972). On the exact finite series distribution of the smallest or the largest root of matrices in three situations. J. Multivariate Anal. 2 201–207.Mathematical Reviews (MathSciNet): MR321240
Zentralblatt MATH: 0271.62060
Digital Object Identifier: doi:10.1016/0047-259X(72)90027-9 - Koev, P. (n.d.). Computing multivariate statistics. Manuscript in preparation.
- Koev, P. and Edelman, A. (2006). The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comput. 75 833–846.Mathematical Reviews (MathSciNet): MR2196994
Zentralblatt MATH: 1117.33007
Digital Object Identifier: doi:10.1090/S0025-5718-06-01824-2 - Krbalek, M. and Seba, P. (2000). The statistical properties of the city transport in Cuernavaca (Mexico) and random matrix ensembles. J. Phys. A Math. Gen. 33 L229–L234. Available at http://stacks.iop.org/0305-4470/33/L229.
- Kuijlaars, A. B. J., McLaughlin, K. T.-R., Van Assche, W. and Vanlessen, M. (2004). The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on [−1, 1]. Adv. in Math. 188 337–398.
- Ma, Z. (n.d.). Accuracy of the Tracy–Widom limit for the largest eigenvalue of white Wishart matrices. Draft manuscript, Dept. Statistics, Stanford Univ. Available at arXiv.org 0810.1329.
- Mahoux, G. and Mehta, M. L. (1991). A method of integration over matrix variables. IV. J. Phys. I (France) 1 1093–1108.
- Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, London.Mathematical Reviews (MathSciNet): MR560319
- Morrison, D. F. (2005). Multivariate Statistical Methods, 4th ed. Thomson, Belmont, CA.
- Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York.
- Nagao, T. and Forrester, P. J. (1995). Asymptotic correlations at the spectrum edge of random matrices. Nuclear Phys. B 435 401–420.Mathematical Reviews (MathSciNet): MR1313625
Zentralblatt MATH: 1020.82588
Digital Object Identifier: doi:10.1016/0550-3213(94)00545-P - Nagao, T. and Wadati, M. (1993). Eigenvalue distribution of random matrices at the spectrum edge. J. Phys. Soc. Japan 62 3845–3856.Mathematical Reviews (MathSciNet): MR1251649
Zentralblatt MATH: 0972.82543
Digital Object Identifier: doi:10.1143/JPSJ.62.3845 - Olver, F. W. J. (1974). Asymptotics and Special Functions. Academic Press, London.Mathematical Reviews (MathSciNet): MR435697
- Riesz, F. and Sz.-Nagy, B. (1955). Functional Analysis. Ungar, New York.Mathematical Reviews (MathSciNet): MR71727
- Seiler, E. and Simon, B. (1975). An inequality for determinants. Proc. Natl. Acad. Sci. 72 3277–3288.Mathematical Reviews (MathSciNet): MR433247
Zentralblatt MATH: 0313.47011
Digital Object Identifier: doi:10.1073/pnas.72.9.3277
JSTOR: links.jstor.org - Simon, B. (1977). Notes on infinite determinants of Hilbert space operators. Adv. in Math. 24 244–273.
- Szegö, G. (1967). Orthogonal Polynomials, Colloquium Publications 23 3rd ed. Amer. Math. Soc., Providence, RI.Mathematical Reviews (MathSciNet): MR310533
- Timm, N. H. (1975). Multivariate Analysis, with Applications in Education and Psychology. Brooks/Cole Publishing Cop. [Wadsworth], Monterey, CA.Mathematical Reviews (MathSciNet): MR443216
- Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 151–174.Mathematical Reviews (MathSciNet): MR1257246
Zentralblatt MATH: 0789.35152
Digital Object Identifier: doi:10.1007/BF02100489
Project Euclid: euclid.cmp/1104254495 - Tracy, C. A. and Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 727–754.Mathematical Reviews (MathSciNet): MR1385083
Zentralblatt MATH: 0851.60101
Digital Object Identifier: doi:10.1007/BF02099545
Project Euclid: euclid.cmp/1104286442 - Tracy, C. A. and Widom, H. (1998). Correlation functions, cluster functions, and spacing distributions for random matrices. J. Statist. Phys. 92 809–835.Mathematical Reviews (MathSciNet): MR1657844
Zentralblatt MATH: 0942.60099
Digital Object Identifier: doi:10.1023/A:1023084324803 - Tracy, C. A. and Widom, H. (2005). Matrix kernels for the Gaussian orthogonal and symplectic ensembles. Ann. Inst. Fourier (Grenoble) 55 2197–2207.Mathematical Reviews (MathSciNet): MR2187952
- Tulino, A. and Verdu, S. (2004). Random Matrix Theory and Wireless Communications. Now Publishers, Hanover, MA.
- Wachter, K. W. (1980). The limiting empirical measure of multiple discriminant ratios. Ann. Statist. 8 937–957.Mathematical Reviews (MathSciNet): MR585695
Zentralblatt MATH: 0473.62050
Digital Object Identifier: doi:10.1214/aos/1176345134
Project Euclid: euclid.aos/1176345134 - Widom, H. (1999). On the relation between orthogonal, symplectic and unitary ensembles. J. Statist. Phys. 94 347–363.Mathematical Reviews (MathSciNet): MR1675356
Zentralblatt MATH: 0935.60090
Digital Object Identifier: doi:10.1023/A:1004516918143 - Wong, R. and Zhao, Y.-Q. (2004). Uniform asymptotic expansion of the Jacobi polynomials in a complex domain. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 2569–2586.Mathematical Reviews (MathSciNet): MR2080215
Zentralblatt MATH: 1078.33008
Digital Object Identifier: doi:10.1098/rspa.2004.1296
JSTOR: links.jstor.org

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Fast approach to the Tracy–Widom law at the edge of GOE and GUE
Johnstone, Iain M. and Ma, Zongming, Annals of Applied Probability, 2012 - Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices
Ma, Zongming, Bernoulli, 2012 - A rate of convergence result for the largest eigenvalue of complex white Wishart matrices
El Karoui, Noureddine, Annals of Probability, 2006
- Fast approach to the Tracy–Widom law at the edge of GOE and GUE
Johnstone, Iain M. and Ma, Zongming, Annals of Applied Probability, 2012 - Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices
Ma, Zongming, Bernoulli, 2012 - A rate of convergence result for the largest eigenvalue of complex white Wishart matrices
El Karoui, Noureddine, Annals of Probability, 2006 - On the distribution of the largest eigenvalue in principal
components analysis
Johnstone, Iain M., Annals of Statistics, 2001 - Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices
El Karoui, Noureddine, Annals of Probability, 2007 - Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case
Ledoux, Michel, Electronic Journal of Probability, 2004 - The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble
Wang, Dong, Annals of Probability, 2009 - The Tracy–Widom limit for the largest eigenvalues of singular complex Wishart matrices
Onatski, Alexei, Annals of Applied Probability, 2008 - Tracy-Widom asymptotics for a random polymer model with gamma-distributed weights
O'Connell, Neil and Ortmann, Janosch, Electronic Journal of Probability, 2015 - Local law and Tracy–Widom limit for sparse sample covariance matrices
Hwang, Jong Yun, Lee, Ji Oon, and Schnelli, Kevin, Annals of Applied Probability, 2019
