The Annals of Statistics

Multiple local whittle estimation in stationary systems

P. M. Robinson

Full-text: Open access


Moving from univariate to bivariate jointly dependent long-memory time series introduces a phase parameter (γ), at the frequency of principal interest, zero; for short-memory series γ=0 automatically. The latter case has also been stressed under long memory, along with the “fractional differencing” case γ=(δ2δ1)π/2, where δ1, δ2 are the memory parameters of the two series. We develop time domain conditions under which these are and are not relevant, and relate the consequent properties of cross-autocovariances to ones of the (possibly bilateral) moving average representation which, with martingale difference innovations of arbitrary dimension, is used in asymptotic theory for local Whittle parameter estimates depending on a single smoothing number. Incorporating also a regression parameter (β) which, when nonzero, indicates cointegration, the consistency proof of these implicitly defined estimates is nonstandard due to the β estimate converging faster than the others. We also establish joint asymptotic normality of the estimates, and indicate how this outcome can apply in statistical inference on several questions of interest. Issues of implemention are discussed, along with implications of knowing β and of correct or incorrect specification of γ, and possible extensions to higher-dimensional systems and nonstationary series.

Article information

Ann. Statist., Volume 36, Number 5 (2008), 2508-2530.

First available in Project Euclid: 13 October 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62M09: Non-Markovian processes: estimation 62M10: Time series, auto-correlation, regression, etc. [See also 91B84] 62M15: Spectral analysis
Secondary: 62G20: Asymptotic properties

Long memory phase cointegration semiparametric estimation consistency asymptotic normality


Robinson, P. M. Multiple local whittle estimation in stationary systems. Ann. Statist. 36 (2008), no. 5, 2508--2530. doi:10.1214/07-AOS545.

Export citation


  • [1] Adenstedt, R. (1974). On large-sample estimation for the mean of a stationary random sequence. Ann. Statist. 2 1095–1107.
  • [2] Anderson, T. W. and Walker, A. M. (1964). On the asymptotic distribution of the autocorrelations of a sample from a linear stochastic process. Ann. Math. Statist. 35 1296–1303.
  • [3] Breidt, F. J., Davis, R. A. and Trindade, A. A. (2001). Least absolute deviation estimation for all-pass time series models. Ann. Statist. 29 919–946.
  • [4] Brillinger, D. R. (1975). Time Series. Data Analysis and Theory. Holt, Rinehart and Winston, New York.
  • [5] Chen, W. W. and Hurvich, C. M. (2006). Semiparametric estimation of fractional cointegrating subspaces. Ann. Statist. 34 2939–2979.
  • [6] Christensen, B. J. and Nielsen, M. (2006). Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting. J. Econometrics 133 343–371.
  • [7] Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17 1749–1766.
  • [8] Davidson, J. E. H. and Hashimadze, N. (2008). Alternative frequency and time domain versions of fractional Brownian motion. Econometric Theory 24 256–297.
  • [9] Fox, R. and Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian series. Ann. Statist. 14 517–532.
  • [10] Giraitis, L. and Robinson, P. M. (2003). Edgeworth expansions for semiparametric Whittle estimation of long memory. Ann. Statist. 31 1325–1375.
  • [11] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle’s estimate. Probab. Theory Related Fields 86 87–104.
  • [12] Hannan, E. J. (1970). Multiple Time Series. Wiley, New York.
  • [13] Henry, M. and Robinson, P. M. (1996). Bandwidth choice in Gaussian semiparametric estimation of long range dependence. Athens Conference on Applied Probability and Time Series Analysis II. Lecture Notes in Statist. 115 220–232. Springer, New York.
  • [14] Hosoya, Y. (1997). Limit theory with long-range dependence and statistical inference of related models. Ann. Statist. 25 105–137.
  • [15] Hualde, J. and Robinson, P. M. (2004). Semiparametric estimation of fractional cointegration. Preprint, London School of Economics.
  • [16] Hurvich, C. M. and Beltrao, K. J. (1994). Automatic semiparametric estimation of the memory parameter of a long memory time series. J. Time Ser. Anal. 15 285–302.
  • [17] Hurvich, C. M. and Deo, R. S. (2001). Plug-in selection of the number of frequencies in regression estimates of the memory parameter of long memory time series. J. Time Ser. Anal. 20 331–341.
  • [18] Hurvich, C. M., Moulines, E. and Soulier, E. (2005). Estimating long memory in volatility. Econometrica 73 1283–1328.
  • [19] Johansen, S. (2005). A representation theory for a class of vector autoregressive models for fractional processes. Working paper, Dept. Applied Mathematics and Statistics, Univ. Copenhagen.
  • [20] Künsch, H. R. (1987). Statistical aspects of self-similar processes. In Proceedings of the First World Congress of the Bernoulli Society 1 67–74. VNU Sci. Press, Utrecht.
  • [21] Lii, K. S. and Rosenblatt, M. (1982). Deconvolution and estimation of transfer function phase and coefficients for non-Gaussian linear processes. Ann. Statist. 10 1195–1208.
  • [22] Lobato, I. N. (1999). A semiparametric two-step estimator in a multivariate long memory model. J. Econometrics 90 129–153.
  • [23] Nielsen, M. O. (2005). Semiparametric estimation in time-series regression with long-range dependence. J. Time Ser. Anal. 26 279–304.
  • [24] Nielsen, M. O. (2007). Local Whittle analysis of stationary fractional cointegration and the implied-realized volatility relation. J. Bus. Econ. Statist. 25 427–446.
  • [25] Parzen, E. (1957). A central limit theorem for multilinear stochastic process. Ann. Math. Statist. 28 252–256.
  • [26] Phillips, P. C. B. and Shimotsu, K. (2004). Whittle estimation in nonstationary and unit root cases. Ann. Statist. 32 656–672.
  • [27] Robinson, P. M. (1994). Semiparametric analysis of long-memory time series. Ann. Statist. 22 515–539.
  • [28] Robinson, P. M. (1995). Log-periodogram regression of time series with long range dependence. Ann. Statist. 23 1048–1072.
  • [29] Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 1630–1661.
  • [30] Robinson, P. M. (2005). Robust covariance matrix estimation: “HAC” estimates with long memory/antipersistence correction. Econometric Theory 21 171–180.
  • [31] Robinson, P. M. and Marinucci, D. (2001). Narrow-band analysis of nonstationary processes. Ann. Statist. 29 947–986.
  • [32] Robinson, P. M. and Marinucci, D. (2003). Semiparametric frequency-domain analysis of fractional cointegration. In Time Series with Long Memory. Adv. Texts Econometrics 334–373. Oxford Univ. Press.
  • [33] Shimotsu, K. (2007). Gaussian semiparametric estimation of multivariate fractionally integrated processes. J. Econometrics 137 277–310.
  • [34] Shimotsu, K. and Phillips, P. C. B. (2006). Exact local Whittle estimation of fractional integration. Ann. Statist. 33 1890–1933.
  • [35] Velasco, C. (1999). Gaussian semiparametric estimation of non-stationary time series. J. Time Ser. Anal. 20 87–127.
  • [36] Velasco, C. (2000). Gaussian semi-parametric estimation of fractional cointegration. Preprint, Univ. Carlos III de Madrid.
  • [37] Velasco, C. (2003). Gaussian semi-parametric estimation of fractional cointegration. J. Time Ser. Anal. 24 345–378.
  • [38] Zygmund, A. A. (1977). Trigonometric Series. I, II. Cambridge Univ. Press, New York.