The Annals of Statistics

Estimating deformations of isotropic Gaussian random fields on the plane

Ethan B. Anderes and Michael L. Stein

Full-text: Open access

Abstract

This paper presents a new approach to the estimation of the deformation of an isotropic Gaussian random field on ℝ2 based on dense observations of a single realization of the deformed random field. Under this framework we investigate the identification and estimation of deformations. We then present a complete methodological package—from model assumptions to algorithmic recovery of the deformation—for the class of nonstationary processes obtained by deforming isotropic Gaussian random fields.

Article information

Source
Ann. Statist., Volume 36, Number 2 (2008), 719-741.

Dates
First available in Project Euclid: 13 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.aos/1205420517

Digital Object Identifier
doi:10.1214/009053607000000893

Mathematical Reviews number (MathSciNet)
MR2396813

Zentralblatt MATH identifier
1133.62077

Subjects
Primary: 62M30: Spatial processes 62M40: Random fields; image analysis
Secondary: 60G60: Random fields

Keywords
Deformation quasiconformal maps nonstationary random fields

Citation

Anderes, Ethan B.; Stein, Michael L. Estimating deformations of isotropic Gaussian random fields on the plane. Ann. Statist. 36 (2008), no. 2, 719--741. doi:10.1214/009053607000000893. https://projecteuclid.org/euclid.aos/1205420517


Export citation

References

  • Ahlfors, L. V. (1966). Lectures on Quasiconformal Mappings. Van Nostrand, Toronto.
  • Anderes, E. B. and Stein, M. L. (2005). Estimating deformations of isotropic gaussian random fields on the plane. Technical report, Center for Integrating Statistical and Environmental Science. Available at http://galton.uchicago.edu/~cises/research/cises-tr27.pdf.
  • Chilès, J. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. Wiley, New York.
  • Clerc, M. and Mallat, S. (2002). The texture gradient equation for recovering shape from texture. IEEE Trans. Pattern Analysis and Machine Intelligence 24 536–549.
  • Clerc, M. and Mallat, S. (2003). Estimating deformations of stationary processes. Ann. Statist. 31 1772–1821.
  • Cressie, N. (1993). Statistics for Spatial Data, rev. ed. Wiley, New York.
  • Damian, D., Sampson, P. and Guttorp, P. (2001). Bayesian estimation of semi-parametric non-stationary spatial covariance structures. Environmetrics 12 161–178.
  • Gardiner, F. P. and Lakic, N. (2000). Quasiconformal Teichmüller Theory. Amer. Math. Soc., Providence, RI.
  • Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. Johns Hopkins Univ. Press.
  • Guyon, X. and Perrin, O. (2000). Identification of space deformation using linear and superficial quadratic variations. Statist. Probab. Lett. 47 307–316.
  • Iovleff, S. and Perrin, O. (2004). Estimating a nonstationary spatial structure using simulated annealing. J. Comput. Graph. Statist. 13 90–105.
  • Krantz, S. G. (2004). Complex Analysis: The Geometric Viewpoint, 2nd ed. Mathematical Association of America, Washington, DC.
  • Krushkal’, S. L. (1979). Quasiconformal Mappings and Riemann Surfaces. Winston, Washington, DC.
  • Ławrynowicz, J. (1983). Quasiconformal Mappings in the Plane: Parametrical Methods. Springer, Berlin.
  • Lehto, O. and Virtanen, K. I. (1965). Quasiconformal Mappings in the Plane. Springer, New York.
  • Perrin, O. and Meiring, W. (1999). Identifiability for nonstationary spatial structure. J. Appl. Probab. 36 1244–1250.
  • Rabiner, L. and Juang, B. (1993). Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cliffs, NJ.
  • Sampson, P. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108–119.
  • Schmidt, A. and O’Hagan, A. (2003). Bayesian inference for nonstationary spatial covariance structure via spatial deformations. J. Roy. Statist. Soc. Ser. B 65 745–758.
  • Silverman, R. A. (1974). Complex Analysis with Applications. Prentice-Hall, Englewood Cliffs, NJ.
  • Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.