Annals of Statistics

Accelerated convergence for nonparametric regression with coarsened predictors

Aurore Delaigle, Peter Hall, and Hans-Georg Müller

Full-text: Open access


We consider nonparametric estimation of a regression function for a situation where precisely measured predictors are used to estimate the regression curve for coarsened, that is, less precise or contaminated predictors. Specifically, while one has available a sample (W1, Y1), …, (Wn, Yn) of independent and identically distributed data, representing observations with precisely measured predictors, where E(Yi|Wi)=g(Wi), instead of the smooth regression function g, the target of interest is another smooth regression function m that pertains to predictors Xi that are noisy versions of the Wi. Our target is then the regression function m(x)=E(Y|X=x), where X is a contaminated version of W, that is, X=W+δ. It is assumed that either the density of the errors is known, or replicated data are available resembling, but not necessarily the same as, the variables X. In either case, and under suitable conditions, we obtain $\sqrt{n}$-rates of convergence of the proposed estimator and its derivatives, and establish a functional limit theorem. Weak convergence to a Gaussian limit process implies pointwise and uniform confidence intervals and $\sqrt{n}$-consistent estimators of extrema and zeros of m. It is shown that these results are preserved under more general models in which X is determined by an explanatory variable. Finite sample performance is investigated in simulations and illustrated by a real data example.

Article information

Ann. Statist., Volume 35, Number 6 (2007), 2639-2653.

First available in Project Euclid: 22 January 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G08: Nonparametric regression 62G05: Estimation

Confidence bands errors-in-variables estimation of extremes functional limit theorem smoothing uniform convergence weak convergence


Delaigle, Aurore; Hall, Peter; Müller, Hans-Georg. Accelerated convergence for nonparametric regression with coarsened predictors. Ann. Statist. 35 (2007), no. 6, 2639--2653. doi:10.1214/009053607000000497.

Export citation


  • Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore, MD.
  • Carroll, R. J. and Hall, P. (2004). Low-order approximations in deconvolution and regression with errors in variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 31–46.
  • Carroll, R. J., Maca, J. D. and Ruppert, D. (1999). Nonparametric regression in the presence of measurement error. Biometrika 86 541–554.
  • Carroll, R. J., Ruppert, D. and Stefanski, L. (1995). Measurement Error in Nonlinear Models. Chapman and Hall, London.
  • Devanarayan, V. and Stefanski, L. A. (2002). Empirical simulation extrapolation for measurement error models with replicate measurements. Statist. Probab. Lett. 59 219–225.
  • Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257–1272.
  • Fan, J. and Masry, E. (1992). Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes. J. Multivariate Anal. 43 237–271.
  • Fan, J. and Truong, Y. K. (1993). Nonparametric regression with errors in variables. Ann. Statist. 21 1900–1925.
  • Fan, J., Truong, Y. K. and Wang, Y. (1991). Nonparametric function estimation involving errors-in-variables. In Nonparametric Functional Estimation and Related Topics (G. Roussas, ed.) 613–627. Kluwer, Dordrecht.
  • Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer, New York.
  • Hobert, J. P. and Wand, M. P. (2000). Automatic generalized nonparametric regression via maximum likelihood. Technical report, Dept. Biostatistics, Harvard School of Public Health.
  • Ioannides, D. A. and Matzner-Løber, E. (2002). Nonparametric estimation of the conditional mode with errors-in-variables: Strong consistency for mixing processes. J. Nonparametr. Statist. 14 341–352.
  • Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement error model using multiple indicators. J. Multivariate Anal. 65 139–165.
  • Linton, O. and Whang, Y.-J. (2002). Nonparametric estimation with aggregated data. Econometric Theory 18 420–468.
  • Stefanski, L. and Carroll, R. J. (1990). Deconvoluting kernel density estimators. Statistics 21 169–184.
  • Stefanski, L. A. and Cook, J. R. (1995). Simulation-extrapolation: The measurement error jackknife. J. Amer. Statist. Assoc. 90 1247–1256.
  • Taupin, M. L. (2001). Semi-parametric estimation in the nonlinear structural errors-in-variables model. Ann. Statist. 29 66–93.