The Annals of Statistics

Discussion: The Dantzig selector: Statistical estimation when p is much larger than n

Bradley Efron, Trevor Hastie, and Robert Tibshirani

Full-text: Open access

Article information

Source
Ann. Statist., Volume 35, Number 6 (2007), 2358-2364.

Dates
First available in Project Euclid: 22 January 2008

Permanent link to this document
https://projecteuclid.org/euclid.aos/1201012960

Digital Object Identifier
doi:10.1214/009053607000000433

Mathematical Reviews number (MathSciNet)
MR2382646

Citation

Efron, Bradley; Hastie, Trevor; Tibshirani, Robert. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 (2007), no. 6, 2358--2364. doi:10.1214/009053607000000433. https://projecteuclid.org/euclid.aos/1201012960


Export citation

References

  • Chen, S. S., Donoho, D. L. and Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20 33–61.
  • Donoho, D. and Tsaig, Y. (2006). Fast solution of $\ell_1$-norm minimization problems when the solution may be sparse. Technical report, Dept. Statistics, Stanford Univ.
  • Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407–499.
  • Osborne, M., Presnell, B. and Turlach, B. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389–403.
  • Rosset, S. and Zhu, J. (2007). Piecewise linear regularized solution paths. Ann. Statist. 35 1012–1030.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267–288.