The Annals of Statistics

Discussion: The Dantzig selector: Statistical estimation when p is much larger than n

Peter J. Bickel

Full-text: Open access

Article information

Source
Ann. Statist., Volume 35, Number 6 (2007), 2352-2357.

Dates
First available in Project Euclid: 22 January 2008

Permanent link to this document
https://projecteuclid.org/euclid.aos/1201012959

Digital Object Identifier
doi:10.1214/009053607000000424

Mathematical Reviews number (MathSciNet)
MR2382645

Citation

Bickel, Peter J. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 (2007), no. 6, 2352--2357. doi:10.1214/009053607000000424. https://projecteuclid.org/euclid.aos/1201012959


Export citation

References

  • Bickel, P., Ritov, Y. and Zakai, A. (2006). Some theory for generalized boosting algorithms. J. Mach. Learn. Res. 7 705–732.
  • Bunea, F., Tsybakov, A. B. and Wegkamp, M. H. (2007). Aggregation for Gaussian regression. Ann. Statist. 35 1674–1697.
  • Candès, E. J. and Tao, T. (2007). The Dantzig selector: Statistical estimation when $p$ is much larger than $n$. Ann. Statist. 35 2313–2351.
  • Donoho, D. L. (2006). For most large underdetermined systems of linear equation the minimal $l_1$-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 797–829.
  • Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425–455.
  • Fan, J. and Lv, J. (2006). Sure independence screening for ultra-high dimensional feature space. Unpublished manuscript. Available at arxiv.org/abs/math/0612857.
  • Györfi, L., Kohler, M., Krzyźak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression. Springer, New York.
  • Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356–1378.
  • Meinshausen, N. and Yu, B. (2007). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist. To appear.
  • Wainwright, M. (2006). Sharp thresholds for high-dimensional and noisy sparsity recovery using $l_1$-constrained quadratic programs. In Proc. Allerton Conference on Communication, Control and Computing.
  • Zhao, P. and Yu, B. (2007). Model selection with the Lasso. J. Mach. Learn. Res. To appear.