The Annals of Statistics

On local U-statistic processes and the estimation of densities of functions of several sample variables

Evarist Giné and David M. Mason

Full-text: Open access

Abstract

A notion of local U-statistic process is introduced and central limit theorems in various norms are obtained for it. This involves the development of several inequalities for U-processes that may be useful in other contexts. This local U-statistic process is based on an estimator of the density of a function of several sample variables proposed by Frees [J. Amer. Statist. Assoc. 89 (1994) 517–525] and, as a consequence, uniform in bandwidth central limit theorems in the sup and in the Lp norms are obtained for these estimators.

Article information

Source
Ann. Statist., Volume 35, Number 3 (2007), 1105-1145.

Dates
First available in Project Euclid: 24 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1185304000

Digital Object Identifier
doi:10.1214/009053607000000154

Mathematical Reviews number (MathSciNet)
MR2341700

Zentralblatt MATH identifier
1175.60017

Subjects
Primary: 60F05: Central limit and other weak theorems 60F15: Strong theorems 62E20: Asymptotic distribution theory 62G30: Order statistics; empirical distribution functions

Keywords
U-statistics central limit theorems empirical process kernel density estimation

Citation

Giné, Evarist; Mason, David M. On local U -statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 (2007), no. 3, 1105--1145. doi:10.1214/009053607000000154. https://projecteuclid.org/euclid.aos/1185304000


Export citation

References

  • Ahmad, I. A. and Fan, Y. (2001). Optimal bandwidths for kernel density estimators of functions of observations. Statist. Probab. Lett. 51 245--251.
  • Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York.
  • Arcones, M. A. (1995). A Bernstein-type inequality for $U$-statistics and $U$-processes. Statist. Probab. Lett. 22 239--247.
  • Bickel, P. and Ritov, Y. (1988). Estimating integrated squared density derivatives: Sharp best order of convergence estimates. Sankhyā Ser. A 50 381--393.
  • Deheuvels, P. and Mason, D. M. (2004). General asymptotic confidence bands based on kernel-type function estimators. Stat. Inference Stoch. Process. 7 225--277.
  • de la Peña, V. H. (1992). Decoupling and Khintchine's inequalities for $U$-statistics. Ann. Probab. 20 1877--1892.
  • de la Peña, V. H. and Giné, E. (1999). Decoupling. From Dependence to Independence. Springer, New York.
  • Devroye, L. (1987). A Course in Density Estimation. Birkhäuser, Boston.
  • Devroye, L. (1992). A note on the usefulness of superkernels in density estimation. Ann. Statist. 20 2037--2056.
  • Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Univ. Press.
  • Dunford, N. and Schwartz, J. T. (1988). Linear Operators. Part I. General Theory. Wiley, New York.
  • Eastwood, V. R. and Horváth, L. (1999). Limit theorems for short distances in $R^m$. Statist. Probab. Lett. 45 261--268.
  • Einmahl, U. and Mason, D. M. (2000). An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab. 13 1--37.
  • Folland, G. B. (1999). Real Analysis: Modern Techniques and Their Applications, 2nd ed. Wiley, New York.
  • Frees, E. W. (1994). Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89 517--525.
  • Giné, E. and Guillou, A. (2001). On consistency of kernel density estimators for randomly censored data: Rates holding uniformly over adaptive intervals. Ann. Inst. H. Poincaré Probab. Statist. 37 503--522.
  • Giné, E. and Koltchinskii, V. (2006). Concentration inequalities and asymptotic results for ratio type empirical processes. Ann. Probab. 34 1143--1216.
  • Giné, E., Latała, R. and Zinn, J. (2000). Exponential and moment inequalities for $U$-statistics. In High Dimensional Probability, II (E. Giné, D. M. Mason and J. A. Wellner, eds.) 13--38. Birkhäuser, Boston.
  • Giné, E. and Mason, D. M. (2006). Uniform in bandwidth estimation of integral functionals of the density function. Preprint.
  • Giné, E. and Mason, D. M. (2007). Laws of the iterated logarithm for the local $U$-statistic process. J. Theoret. Probab. To appear.
  • Giné, E., Mason, D. M. and Zaitsev, A. Yu. (2003). The $L_1$-norm density estimator process. Ann. Probab. 31 719--768.
  • Jain, N. (1977). Central limit theorem and related questions in Banach space. In Probability (J. L. Doob, ed.) 55--65. Amer. Math. Soc., Providence, RI.
  • Jammalamadaka, S. R. and Janson, S. (1986). Limit theorems for a triangular scheme of $U$-statistics with applications to inter-point distances. Ann. Probab. 14 1347--1358.
  • Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer, Berlin.
  • Mason, D. M. (2004). A uniform functional law of the logarithm for the local empirical process. Ann. Probab. 32 1391--1418.
  • Nolan, D. and Pollard, D. (1987). $U$-processes: Rates of convergence. Ann. Statist. 15 780--799.
  • Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Statist. 33 1065--1076.
  • Pinelis, I. F. (1995). Optimum bounds on moments of sums of independent random vectors. Siberian Adv. Math. 5 141--150.
  • Pisier, G. and Zinn, J. (1978). On the limit theorems for random variables with values in the spaces $L_p$, $2\leq p<\infty$. Z. Wahrsch. Verw. Gebiete 41 289--304.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • Rost, D. (2000). Limit theorems for smoothed empirical processes. In High Dimensional Probability, II (E. Giné, D. M. Mason and J. A. Wellner, eds.) 107--113. Birkhäuser, Boston.
  • Schick, A. and Wefelmeyer, W. (2004). Root $n$ consistent density estimators for sums of independent random variables. J. Nonparametr. Stat. 16 925--935.
  • Schick, A. and Wefelmeyer, W. (2006). Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes. Statist. Probab. Lett. 76 1756--1760.
  • Schick, A. and Wefelmeyer, W. (2007). Root-$n$ consistent density estimators of convolutions in weighted $L_1$-norms. J. Statist. Plann. Inference 137 1765--1774.
  • Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 28--76.
  • Vakhania, N. (1981). Probability Distributions on Linear Spaces. North-Holland, Amsterdam.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York.