The Annals of Statistics

Robust Nonparametric Regression with Simultaneous Scale Curve Estimation

W. Hardle and A. B. Tsybakov

Full-text: Open access

Abstract

Let $\{X_i, Y_i\}^n_{i=1} \subset \mathbb{R}^d \times \mathbb{R}$ be independent identically distributed random variables. If the conditional distribution $F(y \mid x)$ can be parametrized by $F(y \mid x) = F_0((y - m(x))/\sigma(x))$ with a fixed and known distribution $F_0$, the regression curve $m(x)$ and scale curve $\sigma(x)$ could be estimated by some parametric method. More generally, we assume that $F$ is unknown and consider nonparametric simultaneous $M$-type estimates of the unknown functions $m(x)$ and $\sigma(x)$, using kernel estimators for the conditional distribution function $F(y \mid x)$. We show pointwise consistency and asymptotic normality of these estimates. The rate of convergence is optimal in the sense of Stone (1980). The asymptotic bias term of this robust estimate turns out to be the same as for the linear Nadaraya-Watson kernel estimate.

Article information

Source
Ann. Statist., Volume 16, Number 1 (1988), 120-135.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176350694

Digital Object Identifier
doi:10.1214/aos/1176350694

Mathematical Reviews number (MathSciNet)
MR924860

Zentralblatt MATH identifier
0668.62025

JSTOR
links.jstor.org

Subjects
Primary: 62G05: Estimation

Keywords
Robust curve estimation $M$-estimation nonparametric regression joint estimation of regression and scale curve optimal rate of convergence

Citation

Hardle, W.; Tsybakov, A. B. Robust Nonparametric Regression with Simultaneous Scale Curve Estimation. Ann. Statist. 16 (1988), no. 1, 120--135. doi:10.1214/aos/1176350694. https://projecteuclid.org/euclid.aos/1176350694


Export citation