Annals of Statistics

Minimum Distance Estimation and Goodness-of-Fit Tests in First-Order Autoregression

Hira L. Koul

Full-text: Open access

Abstract

This paper gives a class of minimum $L_2$-distance estimators of the autoregression parameter in the first-order autoregression model when the errors have an unknown symmetric distribution. Within the class an asymptotically efficient estimator is exhibited. The asymptotic efficiency of this estimator relative to the least-squares estimator is the same as that of a certain signed rank estimator relative to the sample mean in the one sample location model. The paper also discusses goodness-of-fit tests for testing for symmetry and for a specified error distribution.

Article information

Source
Ann. Statist., Volume 14, Number 3 (1986), 1194-1213.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176350059

Digital Object Identifier
doi:10.1214/aos/1176350059

Mathematical Reviews number (MathSciNet)
MR856815

Zentralblatt MATH identifier
0607.62101

JSTOR
links.jstor.org

Subjects
Primary: 62G05: Estimation
Secondary: 62G20: Asymptotic properties 62G10: Hypothesis testing

Keywords
Weighted empirical residual process stationary ergodic influence curve

Citation

Koul, Hira L. Minimum Distance Estimation and Goodness-of-Fit Tests in First-Order Autoregression. Ann. Statist. 14 (1986), no. 3, 1194--1213. doi:10.1214/aos/1176350059. https://projecteuclid.org/euclid.aos/1176350059


Export citation