Annals of Statistics
- Ann. Statist.
- Volume 14, Number 3 (1986), 1194-1213.
Minimum Distance Estimation and Goodness-of-Fit Tests in First-Order Autoregression
Abstract
This paper gives a class of minimum $L_2$-distance estimators of the autoregression parameter in the first-order autoregression model when the errors have an unknown symmetric distribution. Within the class an asymptotically efficient estimator is exhibited. The asymptotic efficiency of this estimator relative to the least-squares estimator is the same as that of a certain signed rank estimator relative to the sample mean in the one sample location model. The paper also discusses goodness-of-fit tests for testing for symmetry and for a specified error distribution.
Article information
Source
Ann. Statist., Volume 14, Number 3 (1986), 1194-1213.
Dates
First available in Project Euclid: 12 April 2007
Permanent link to this document
https://projecteuclid.org/euclid.aos/1176350059
Digital Object Identifier
doi:10.1214/aos/1176350059
Mathematical Reviews number (MathSciNet)
MR856815
Zentralblatt MATH identifier
0607.62101
JSTOR
links.jstor.org
Subjects
Primary: 62G05: Estimation
Secondary: 62G20: Asymptotic properties 62G10: Hypothesis testing
Keywords
Weighted empirical residual process stationary ergodic influence curve
Citation
Koul, Hira L. Minimum Distance Estimation and Goodness-of-Fit Tests in First-Order Autoregression. Ann. Statist. 14 (1986), no. 3, 1194--1213. doi:10.1214/aos/1176350059. https://projecteuclid.org/euclid.aos/1176350059

