## The Annals of Statistics

- Ann. Statist.
- Volume 13, Number 3 (1985), 1244-1248.

### Coherent Predictions are Strategic

David A. Lane and William D. Sudderth

#### Abstract

Two random quantities $x$ and $y$, taking values in sets $X$ and $Y$, are to be observed sequentially. A predicter (bookie) posts odds on $(x, y)$ and on $y$ given $x$ according to functions $P$ and $q(x)$, respectively. The predicter is coherent (the bookie can avoid a sure loss) if and only if $P$ is a finitely additive probability distribution on $X \times Y$ and $q$ satisfies a general law of total probability: $P(A) = \int q(x)(Ax)P_0(dx)$ for $A \subset X \times Y, Ax = \{y: (x, y) \in A\}, P_0 = \text{marginal of} P \text{on} X.$

#### Article information

**Source**

Ann. Statist., Volume 13, Number 3 (1985), 1244-1248.

**Dates**

First available in Project Euclid: 12 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aos/1176349669

**Digital Object Identifier**

doi:10.1214/aos/1176349669

**Mathematical Reviews number (MathSciNet)**

MR803771

**Zentralblatt MATH identifier**

0585.62004

**JSTOR**

links.jstor.org

**Subjects**

Primary: 62A15

Secondary: 60A05: Axioms; other general questions

**Keywords**

Coherence strategic measures conglomerable measures finite additivity prediction

#### Citation

Lane, David A.; Sudderth, William D. Coherent Predictions are Strategic. Ann. Statist. 13 (1985), no. 3, 1244--1248. doi:10.1214/aos/1176349669. https://projecteuclid.org/euclid.aos/1176349669