Annals of Statistics

On a Characterization of the Exponential Distribution Based on a Type 2 Right Censored Sample

Julian Leslie and Constance van Eeden

Full-text: Open access

Abstract

Dufour gives a conjecture concerning a characterization of the exponential distribution based on type 2 right censored samples. This conjecture, if true, generalizes the characterization based on complete samples of Seshadri, Csorgo and Stephens (1969) and Dufour, Maag and van Eeden (1984). In this paper it is shown that Dufour's conjecture is true if the number of censored observations is no larger than $(1/3)n - 1$, where $n$ is the sample size. The result has implications for testing fit of censored data to the exponential distribution.

Article information

Source
Ann. Statist., Volume 21, Number 3 (1993), 1640-1647.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176349276

Digital Object Identifier
doi:10.1214/aos/1176349276

Mathematical Reviews number (MathSciNet)
MR1241283

Zentralblatt MATH identifier
0791.62014

JSTOR
links.jstor.org

Subjects
Primary: 62E10: Characterization and structure theory
Secondary: 62E15: Exact distribution theory

Keywords
Characterization exponential distribution goodness-of-fit

Citation

Leslie, Julian; van Eeden, Constance. On a Characterization of the Exponential Distribution Based on a Type 2 Right Censored Sample. Ann. Statist. 21 (1993), no. 3, 1640--1647. doi:10.1214/aos/1176349276. https://projecteuclid.org/euclid.aos/1176349276


Export citation