## The Annals of Statistics

- Ann. Statist.
- Volume 20, Number 2 (1992), 1137-1142.

### Vincentization Revisited

#### Abstract

Vincentization is a convenient method of aggregating a set of $n \geq 2$ probability distributions $F_1, \ldots, F_n$ in such a way that their synthesis, $F = T(F_1, \ldots, F_n)$, be of the same functional form as the $F_i$'s when the latter are identical up to a location-scale transformation. A characterization of this combination rule is proposed and some of its consequences are outlined.

#### Article information

**Source**

Ann. Statist., Volume 20, Number 2 (1992), 1137-1142.

**Dates**

First available in Project Euclid: 12 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aos/1176348676

**Digital Object Identifier**

doi:10.1214/aos/1176348676

**Mathematical Reviews number (MathSciNet)**

MR1165612

**Zentralblatt MATH identifier**

0746.62004

**JSTOR**

links.jstor.org

**Subjects**

Primary: 62A99: None of the above, but in this section

Secondary: 39B40

**Keywords**

Consensus location-scale family opinion pool shape-preservation Vincent average

#### Citation

Genest, Christian. Vincentization Revisited. Ann. Statist. 20 (1992), no. 2, 1137--1142. doi:10.1214/aos/1176348676. https://projecteuclid.org/euclid.aos/1176348676