The Annals of Statistics

Some Results on $s^{n-k}$ Fractional Factorial Designs with Minimum Aberration or Optimal Moments

Jiahua Chen and C. F. J. Wu

Full-text: Open access

Abstract

The minimum aberration criterion is commonly used for selecting good fractional factorial designs. In this paper we obtain minimum aberration $2^{n - k}$ designs for $k = 3, 4$ and any $n$. For $k > 4$ analogous results are not available for general $n$ since the resolution criterion is not periodic for general $n$ and $k > 4$. However, it can be shown that for any fixed $k$, both the resolution criterion and the minimum aberration criterion have a periodicity property in $n$ for $s^{n - k}$ designs with large $n$. Furthermore, the optimal-moments criterion is periodic for any $n$ and $k$.

Article information

Source
Ann. Statist., Volume 19, Number 2 (1991), 1028-1041.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176348135

Digital Object Identifier
doi:10.1214/aos/1176348135

Mathematical Reviews number (MathSciNet)
MR1105859

Zentralblatt MATH identifier
0725.62068

JSTOR
links.jstor.org

Subjects
Primary: 62K15: Factorial designs
Secondary: 62K05: Optimal designs

Keywords
Fractional factorial design minimum aberration design optimal-moments design resolution

Citation

Chen, Jiahua; Wu, C. F. J. Some Results on $s^{n-k}$ Fractional Factorial Designs with Minimum Aberration or Optimal Moments. Ann. Statist. 19 (1991), no. 2, 1028--1041. doi:10.1214/aos/1176348135. https://projecteuclid.org/euclid.aos/1176348135


Export citation