Annals of Statistics

Quantile Estimation with a Complex Survey Design

Carol A. Francisco and Wayne A. Fuller

Full-text: Open access

Abstract

Estimation of the finite population distribution function and related statistics, such as the median and interquartile range, is considered. Large-sample properties of estimators constructed from stratified cluster samples, and properties of large-sample confidence intervals, are established. The results are obtained within the context of a sequence of finite populations generated from a superpopulation.

Article information

Source
Ann. Statist., Volume 19, Number 1 (1991), 454-469.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176347993

Digital Object Identifier
doi:10.1214/aos/1176347993

Mathematical Reviews number (MathSciNet)
MR1091862

Zentralblatt MATH identifier
0787.62011

JSTOR
links.jstor.org

Subjects
Primary: 62D05: Sampling theory, sample surveys
Secondary: 60F05: Central limit and other weak theorems

Keywords
Confidence interval finite population interquartile range quantiles stratified sampling test inversion

Citation

Francisco, Carol A.; Fuller, Wayne A. Quantile Estimation with a Complex Survey Design. Ann. Statist. 19 (1991), no. 1, 454--469. doi:10.1214/aos/1176347993. https://projecteuclid.org/euclid.aos/1176347993


Export citation