The Annals of Statistics
- Ann. Statist.
- Volume 17, Number 3 (1989), 1275-1284.
A Fixed Point Characterization for Bias of Autoregressive Estimators
Robert A. Stine and Paul Shaman
Abstract
Least squares estimators of the coefficients of an autoregression of known, finite order are biased to order $1/T$, where $T$ is the sample length, unless the observed time series is generated by a unique model for that order. The coefficients of this special model are the fixed point of a linear mapping defined by the bias of the least squares estimator. Separate results are given for models with known mean and unknown mean. The "fixed point models" for different orders of autoregression are least squares approximations to an infinite-order autoregression which is unique but for arbitrary scaling. Explicit expressions are given for the coefficients of the fixed point models at each order. The autocorrelation function and spectral density of the underlying infinite-order process are also presented. Numerical calculations suggest similar properties hold for Yule-Walker estimators. Implications for bootstrapping autoregressive models are discussed.
Article information
Source
Ann. Statist., Volume 17, Number 3 (1989), 1275-1284.
Dates
First available in Project Euclid: 12 April 2007
Permanent link to this document
https://projecteuclid.org/euclid.aos/1176347268
Digital Object Identifier
doi:10.1214/aos/1176347268
Mathematical Reviews number (MathSciNet)
MR1015150
Zentralblatt MATH identifier
0681.62075
JSTOR
links.jstor.org
Subjects
Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84]
Keywords
Autoregressive process least squares estimator bias fixed point contraction Durbin-Levinson recursion Yule-Walker estimator
Citation
Stine, Robert A.; Shaman, Paul. A Fixed Point Characterization for Bias of Autoregressive Estimators. Ann. Statist. 17 (1989), no. 3, 1275--1284. doi:10.1214/aos/1176347268. https://projecteuclid.org/euclid.aos/1176347268