The Annals of Statistics

Neyman Factorization and Minimality of Pairwise Sufficient Subfields

J. K. Ghosh, H. Morimoto, and S. Yamada

Full-text: Open access

Abstract

Assume that every probability measure $P$ in $\mathscr{P}$ of a statistical structure $(X, \mathscr{A}, \mathscr{P})$ has a density $p(x, P)$ w.r.t. a (not necessarily $\sigma$-finite) measure $m$. Let $\mathscr{B}$ be any subfield and suppose that the densities are factored as $p(x, P) = g(x, P)h(x)$ where $g$ is $\mathscr{B}$-measurable. Then $\mathscr{B}$ is pairwise sufficient and contains supports of $P$'s. Assume further that $m$ is locally localizable and $\mathscr{B}$ is pairwise sufficient and contains supports of $P$'s. Then the densities are factored as above. Two partial orders are introduced for pairwise sufficient subfields. Assuming that every $P$ has a support, a subfield is constructed which is the smallest with supports under the first partial order, and is the smallest under the second. This is used to give a simple proof of existence of the minimal sufficient subfield for the coherent case. In the (uncountable) discrete case it is proved that under the first partial order there are infinitely many minimal pairwise sufficient subfields and hence there is none that is smallest.

Article information

Source
Ann. Statist., Volume 9, Number 3 (1981), 514-530.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176345456

Digital Object Identifier
doi:10.1214/aos/1176345456

Mathematical Reviews number (MathSciNet)
MR615428

Zentralblatt MATH identifier
0475.62003

JSTOR
links.jstor.org

Subjects
Primary: 62B05: Sufficient statistics and fields

Keywords
Pairwise sufficiency Neyman factorization minimality local weak domination discrete support pairwise smallest smallest pairwise sufficient with support

Citation

Ghosh, J. K.; Morimoto, H.; Yamada, S. Neyman Factorization and Minimality of Pairwise Sufficient Subfields. Ann. Statist. 9 (1981), no. 3, 514--530. doi:10.1214/aos/1176345456. https://projecteuclid.org/euclid.aos/1176345456


Export citation