Annals of Statistics
- Ann. Statist.
- Volume 8, Number 3 (1980), 586-597.
Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix
Abstract
Let $\mathbf{S}_{p \times p}$ have a Wishart distribution with scale matrix $\Sigma$ and $k$ degrees of freedom. Estimators of $\Sigma$ are given for each of the loss functions $L_1(\hat{\Sigma}, \Sigma) = \operatorname{tr} (\hat{\Sigma}\Sigma^{-1}) - \log \det (\hat{\Sigma}\Sigma^{-1}) - p$ and $L_2(\hat{\Sigma}, \Sigma) = \operatorname{tr} (\hat{\Sigma}\Sigma^{-1} - I)^2$. The obvious estimators of $\Sigma$ are the scalar multiples of $\mathbf{S}$, i.e., $a\mathbf{S}$ where $0 < a \leqslant 1/k$. (Recall that $(1/k)\mathbf{S}$ is unbiased.) For each problem $(\Sigma, \hat{\Sigma}, L_i), i = 1, 2$, we provide empirical Bayes estimators which dominate $a\mathbf{S}$ by a substantial amount. It is seen that the uniform reduction in the risk function determined by $L_2$ is at least $100(p + 1)/(k + p + 1){\tt\%}$. Dominance results for $L_1$ and $L_2$ were first given by James and Stein.
Article information
Source
Ann. Statist., Volume 8, Number 3 (1980), 586-597.
Dates
First available in Project Euclid: 12 April 2007
Permanent link to this document
https://projecteuclid.org/euclid.aos/1176345010
Digital Object Identifier
doi:10.1214/aos/1176345010
Mathematical Reviews number (MathSciNet)
MR568722
Zentralblatt MATH identifier
0441.62045
JSTOR
links.jstor.org
Subjects
Primary: 62F10: Point estimation
Secondary: 62C99: None of the above, but in this section
Keywords
Covariance matrix empirical Bayes estimators unbiased estimation of risk function
Citation
Haff, L. R. Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix. Ann. Statist. 8 (1980), no. 3, 586--597. doi:10.1214/aos/1176345010. https://projecteuclid.org/euclid.aos/1176345010

