The Annals of Statistics

Relationships Between the UMVU Estimators of the Mean and Median of a Function of a Normal Distribution

Farhad Mehran

Full-text: Open access

Abstract

Let $\eta = f(\mu)$ and $\theta = Ef(Y)$, where $f$ is a monotone function and $Y \sim N(\mu, \sigma^2)$. In this note we use the method of convolution transforms to show that the UMVU estimators of $\eta$ and $\theta$ based on a pair of independent sufficient statistics $T \sim N(\mu, \alpha \sigma^2)$ and $S^2 \sim \sigma^2 \chi^2_{(\nu)}$ are related to each other in a simple manner: the replacement $\alpha$ by $\alpha - 1$ in the expression of the UMVU estimator of $\eta$ gives the corresponding expression of the UMVU estimator of $\theta$. In addition, we show that a similar relationship also exists among the estimators of the variances.

Article information

Source
Ann. Statist., Volume 3, Number 2 (1975), 457-460.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176343071

Digital Object Identifier
doi:10.1214/aos/1176343071

Mathematical Reviews number (MathSciNet)
MR381106

Zentralblatt MATH identifier
0303.62025

JSTOR
links.jstor.org

Subjects
Primary: 62B05: Sufficient statistics and fields
Secondary: 62F10: Point estimation 62J99: None of the above, but in this section

Keywords
UMVU estimation function of normal distribution

Citation

Mehran, Farhad. Relationships Between the UMVU Estimators of the Mean and Median of a Function of a Normal Distribution. Ann. Statist. 3 (1975), no. 2, 457--460. doi:10.1214/aos/1176343071. https://projecteuclid.org/euclid.aos/1176343071


Export citation