Annals of Statistics

Hiding and Covering in a Compact Metric Space

Robert J. McEliece and Edward C. Posner

Full-text: Open access

Abstract

This paper studies the relationship between games of search on a compact metric space $X$ and the absolute epsilon entropy $I(X)$ of $X$. The main result is that $I(X) = -\log \nu_L^\ast, \nu_L^\ast$ being the lower value of a game on $X$ we call "restricted hide and seek."

Article information

Source
Ann. Statist., Volume 1, Number 4 (1973), 729-739.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176342467

Digital Object Identifier
doi:10.1214/aos/1176342467

Mathematical Reviews number (MathSciNet)
MR343980

Zentralblatt MATH identifier
0287.90035

JSTOR
links.jstor.org

Citation

McEliece, Robert J.; Posner, Edward C. Hiding and Covering in a Compact Metric Space. Ann. Statist. 1 (1973), no. 4, 729--739. doi:10.1214/aos/1176342467. https://projecteuclid.org/euclid.aos/1176342467


Export citation