The Annals of Statistics

Optimal change-point estimation from indirect observations

A. Goldenshluger, A. Tsybakov, and A. Zeevi

Full-text: Open access

Abstract

We study nonparametric change-point estimation from indirect noisy observations. Focusing on the white noise convolution model, we consider two classes of functions that are smooth apart from the change-point. We establish lower bounds on the minimax risk in estimating the change-point and develop rate optimal estimation procedures. The results demonstrate that the best achievable rates of convergence are determined both by smoothness of the function away from the change-point and by the degree of ill-posedness of the convolution operator. Optimality is obtained by introducing a new technique that involves, as a key element, detection of zero crossings of an estimate of the properly smoothed second derivative of the underlying function.

Article information

Source
Ann. Statist., Volume 34, Number 1 (2006), 350-372.

Dates
First available in Project Euclid: 2 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.aos/1146576266

Digital Object Identifier
doi:10.1214/009053605000000750

Mathematical Reviews number (MathSciNet)
MR2275245

Zentralblatt MATH identifier
1091.62021

Subjects
Primary: 62G05: Estimation 62G20: Asymptotic properties

Keywords
Change-point estimation deconvolution minimax risk ill-posedness probe functional optimal rates of convergence

Citation

Goldenshluger, A.; Tsybakov, A.; Zeevi, A. Optimal change-point estimation from indirect observations. Ann. Statist. 34 (2006), no. 1, 350--372. doi:10.1214/009053605000000750. https://projecteuclid.org/euclid.aos/1146576266


Export citation

References

  • Antoniadis, A. and Gijbels, I. (2002). Detecting abrupt changes by wavelet methods. J. Nonparametr. Statist. 14 7--29.
  • Belitser, E. and Levit, B. (2001). Asymptotically local minimax estimation of infinitely smooth density with censored data. Ann. Inst. Statist. Math. 53 289--306.
  • Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384--2398.
  • Carlstein, E., Müller, H.-G. and Siegmund, D., eds. (1994). Change--Point Problems. IMS, Hayward, CA.
  • Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184--1186.
  • Cavalier, L. and Tsybakov, A. B. (2002). Sharp adaptation for inverse problems with random noise. Probab. Theory Related Fields 123 323--354.
  • Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257--1272.
  • Fan, J. and Koo, J.-Y. (2002). Wavelet deconvolution. IEEE Trans. Inform. Theory 48 734--747.
  • Gijbels, I., Hall, P. and Kneip, A. (1999). On the estimation of jump points in smooth curves. Ann. Inst. Statist. Math. 51 231--251.
  • Goldenshluger, A. (1999). On pointwise adaptive nonparametric deconvolution. Bernoulli 5 907--925.
  • Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing. Addison--Wesley, Reading, MA.
  • Hirschman, I. I. and Widder, D. V. (1955). The Convolution Transform. Princeton Univ. Press.
  • Huh, J. and Carrière, K. C. (2002). Estimation of regression functions with a discontinuity in a derivative with local polynomial fits. Statist. Probab. Lett. 56 329--343.
  • Ibragimov, I. A. and Hasminskii, R. Z. (1983). Estimation of distribution density. J. Soviet Math. 25 40--57.
  • Korostelev, A. P. (1987). Minimax estimation of a discontinuous signal. Theory Probab. Appl. 32 727--730.
  • Korostelev, A. P. and Tsybakov, A. B. (1993). Minimax Theory of Image Reconstruction. Lecture Notes in Statist. 82. Springer, New York.
  • Mallat, S. (1998). A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA.
  • Müller, H.-G. (1992). Change-points in nonparametric regression analysis. Ann. Statist. 20 737--761.
  • Neumann, M. H. (1997). Optimal change-point estimation in inverse problems. Scand. J. Statist. 24 503--521.
  • Park, C.-W. and Kim, W.-C. (2004). Estimation of a regression function with a sharp change point using boundary wavelets. Statist. Probab. Lett. 66 435--448.
  • Raimondo, M. (1998). Minimax estimation of sharp change points. Ann. Statist. 26 1379--1397.
  • Spokoiny, V. (1998). Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Ann. Statist. 26 1356--1378.
  • Tsybakov, A. B. (2004). Introduction à l'estimation non-paramétrique. Springer, Berlin.
  • van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York.
  • Wang, Y. (1995). Jump and sharp cusp detection by wavelets. Biometrika 82 385--397.
  • Wang, Y. (1999). Change-points via wavelets for indirect data. Statist. Sinica 9 103--117.
  • Yin, Y. Q. (1988). Detection of the number, locations and magnitudes of jumps. Comm. Statist. Stochastic Models 4 445--455.