Annals of Statistics

Spatial extremes: Models for the stationary case

Laurens de Haan and Teresa T. Pereira

Full-text: Open access

Abstract

The aim of this paper is to provide models for spatial extremes in the case of stationarity. The spatial dependence at extreme levels of a stationary process is modeled using an extension of the theory of max-stable processes of de Haan and Pickands [Probab. Theory Related Fields 72 (1986) 477–492]. We propose three one-dimensional and three two-dimensional models. These models depend on just one parameter or a few parameters that measure the strength of tail dependence as a function of the distance between locations. We also propose two estimators for this parameter and prove consistency under domain of attraction conditions and asymptotic normality under appropriate extra conditions.

Article information

Source
Ann. Statist., Volume 34, Number 1 (2006), 146-168.

Dates
First available in Project Euclid: 2 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.aos/1146576259

Digital Object Identifier
doi:10.1214/009053605000000886

Mathematical Reviews number (MathSciNet)
MR2275238

Zentralblatt MATH identifier
1104.60021

Subjects
Primary: 60G70: Extreme value theory; extremal processes 62H11: Directional data; spatial statistics 62G32: Statistics of extreme values; tail inference
Secondary: 62E20: Asymptotic distribution theory 60G10: Stationary processes 62M40: Random fields; image analysis

Keywords
Extreme-value theory spatial extremes spatial tail dependence max-stable processes multivariate extremes semiparametric estimation

Citation

de Haan, Laurens; Pereira, Teresa T. Spatial extremes: Models for the stationary case. Ann. Statist. 34 (2006), no. 1, 146--168. doi:10.1214/009053605000000886. https://projecteuclid.org/euclid.aos/1146576259


Export citation

References

  • Balkema, A. A. and de Haan, L. (1988). Almost sure continuity of stable moving average processes with index less than one. Ann. Probab. 16 333–343.
  • Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. J. Appl. Probab. 14 732–739.
  • Coles, S. G. (1993). Regional modelling of extreme storms via max-stable processes. J. Roy. Statist. Soc. Ser. B 55 797–816.
  • de Haan, L. and Lin, T. (2001). On convergence toward an extreme value distribution in $C[0,1]$. Ann. Probab. 29 467–483.
  • de Haan, L. and Pickands, J., III (1986). Stationary min-stable stochastic processes. Probab. Theory Related Fields 72 477–492.
  • de Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. Verw. Gebiete 40 317–337.
  • Eddy, W. F. (1980). The distribution of the convex hull of a Gaussian sample. J. Appl. Probab. 17 686–695.
  • Falk, M., Hüsler, J. and Reiss, R.-D. (1994). Laws of Small Numbers: Extremes and Rare Events. Birkhäuser, Basel.
  • Huang, X. (1992). Statistics of bivariate extreme values. Ph.D. dissertation, Tinbergen Institute.
  • Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statist. Probab. Lett. 7 283–286.
  • Pickands, J., III (1981). Multivariate extreme value distributions (with discussion). Bull. Inst. Internat. Statist. 49 859–878, 894–902.
  • Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5 33–44.
  • Sibuya, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. 11 195–210.
  • Smith, R. (1990). Max-stable processes and spatial extremes. Unpublished manuscript.