The Annals of Statistics

On the Chernoff bound for efficiency of quantum hypothesis testing

Vladislav Kargin

Full-text: Open access

Abstract

The paper estimates the Chernoff rate for the efficiency of quantum hypothesis testing. For both joint and separate measurements, approximate bounds for the rate are given if both states are mixed, and exact expressions are derived if at least one of the states is pure. The efficiencies of tests with separate and joint measurements are compared. The results are illustrated by a test of quantum entanglement.

Article information

Source
Ann. Statist., Volume 33, Number 2 (2005), 959-976.

Dates
First available in Project Euclid: 26 May 2005

Permanent link to this document
https://projecteuclid.org/euclid.aos/1117114342

Digital Object Identifier
doi:10.1214/009053604000001219

Mathematical Reviews number (MathSciNet)
MR2163165

Zentralblatt MATH identifier
1070.62117

Subjects
Primary: 62P35: Applications to physics 62G10: Hypothesis testing

Keywords
Quantum statistics fidelity quantum relative entropy joint measurement separate measurement entanglement

Citation

Kargin, Vladislav. On the Chernoff bound for efficiency of quantum hypothesis testing. Ann. Statist. 33 (2005), no. 2, 959--976. doi:10.1214/009053604000001219. https://projecteuclid.org/euclid.aos/1117114342


Export citation

References

  • Ballester, M. A. (2004). Estimation of unitary quantum operations. Phys. Rev. A 69 022303.
  • Barndorff-Nielsen, O. E., Gill, R. D. and Jupp, P. E. (2003). On quantum statistical inference (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 65 775--816.
  • Bennett, C. H., DiVincenzo, D. P., Fuchs, C. A., Mor, T., Rains, E., Shor, P. W., Smolin, J. A. and Wootters, W. K. (1999). Quantum nonlocality without entanglement. Phys. Rev. A 59 1070--1091.
  • Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 493--507.
  • Cirac, J. I. and Zoller, P. (1995). Quantum computations with cold trapped ions. Phys. Rev. Lett. 74 4091--4094.
  • Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley, New York.
  • Fuchs, C. A. and Caves, C. M. (1995). Mathematical techniques for quantum communication theory. Open Systems and Information Dynamics 3 345--356. Available at http://arxiv.org/abs/quant-ph/9604001.
  • Fuchs, C. A. and van de Graaf, J. (1999). Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inform. Theory 45 1216--1227.
  • Gill, R. D. (2001). Asymptotics in quantum statistics. In State of the Art in Probability and Statistics 255--285. IMS, Beachwood, OH.
  • Gill, R. D. and Massar, S. (2000). State estimation for large ensembles. Phys. Rev. A 61 042312.
  • Helstrom, C. W. (1976). Quantum Detection and Estimation Theory. Academic Press, New York.
  • Hoeffding, W. (1965). Asymptotically optimal tests for multinomial distributions. Ann. Math. Statist. 36 369--401.
  • Holevo, A. S. (1976). Investigation of a general theory of statistical decisions. Trudy Mat. Inst. Steklov. 124. [English translation in Proc. Steklov Inst. Math. 3 (1978) Amer. Math. Soc., Providence, RI.]
  • Holevo, A. S. (2001). Statistical Structure of Quantum Theory. Springer, Berlin.
  • Keyl, M. and Werner, R. F. (2001). Estimating the spectrum of a density operator. Phys. Rev. A 64 052311.
  • Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge Univ. Press.
  • Ogawa, T. and Hayashi, M. (2002). On error exponents in quantum hypothesis testing. Available at http://arxiv.org/abs/quant-ph/0206151.
  • Ogawa, T. and Nagaoka, H. (2000). Strong converse and Stein's lemma in quantum hypothesis testing. IEEE Trans. Inform. Theory 46 2428--2433.
  • Parthasarathy, K. R. (2001). On consistency of the maximum likelihood method in testing multiple quantum hypotheses. In Stochastics in Finite and Infinite Dimensions (T. Hida et al., eds.) 361--377. Birkhäuser, Boston.
  • Peres, A. (1995). Quantum Theory: Concepts and Methods. Kluwer, Dordrecht.
  • Sanov, I. N. (1957). On the probability of large deviations of random variables. Mat. Sb. N. S. 42 11--44.
  • Santaló, L. A. (1976). Integral Geometry and Geometric Probability. Addison--Wesley, Reading, MA.
  • Turchette, Q. A., Wood, C. S., King, B. E., Myatt, C. J., Leibfried, D., Itano, W. M., Monroe, C. and Wineland, D. J. (1998). Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81 3631--3634.